IDEAS home Printed from https://ideas.repec.org/p/ags/feemcl/230586.html
   My bibliography  Save this paper

Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe

Author

Listed:
  • Ščasný, Milan
  • Massetti, Emanuele
  • Melichar, Jan
  • Carrara, Samuel

Abstract

This paper presents estimates of the economic benefit of air quality improvements in Europe that occur as a side effect of GHG emission reductions. We consider three climate policy scenarios that reach radiative forcing levels in 2100 of three Representative Concentration Pathways (RCPs). These targets are achieved by introducing a global uniform tax on all GHG emissions in the Integrated Assessment Model WITCH, assuming both full as well as limited technological flexibility. The resulting consumption patterns of fossil fuels are used to estimate the physical impacts and the economic benefits of pollution reductions on human health and on key assets by implementing the most advanced version of the ExternE methodology with its Impact Pathway Analysis. We find that the mitigation scenario compatible with +2°C reduces total pollution costs in Europe by 76%. Discounted ancillary benefits are more than €2.5 trillion between 2015 and 2100. The monetary value of reduced pollution is equal to €22 per abated ton of CO2 in Europe. Less strict climate policy scenarios generate overall smaller, but still considerable, local benefits (14 € or 18 € per abated ton of CO2). Without discounting, the ancillary benefits are in a range of €36 to €50 per ton of CO2 abated. Cumulative ancillary benefits exceed the cumulative additional cost of electricity generation in Europe. Each European country alone would be better off if the mitigation policy was implemented, although the local benefits in absolute terms vary significantly across the countries. We can identify the relative losers and winners of ancillary benefits in Europe. In particular, we find that large European countries contribute to as much as they benefit from ancillary benefits. The scenarios with limited technology flexibility do deliver results that are similar to the full technology flexibility scenario.

Suggested Citation

  • Ščasný, Milan & Massetti, Emanuele & Melichar, Jan & Carrara, Samuel, 2016. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Climate Change and Sustainable Development 230586, Fondazione Eni Enrico Mattei (FEEM).
  • Handle: RePEc:ags:feemcl:230586
    DOI: 10.22004/ag.econ.230586
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/230586/files/NDL2015-084.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bosetti, Valentina & Carraro, Carlo & De Cian, Enrica & Massetti, Emanuele & Tavoni, Massimo, 2013. "Incentives and stability of international climate coalitions: An integrated assessment," Energy Policy, Elsevier, vol. 55(C), pages 44-56.
    2. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    3. Carraro, Carlo & Galeotti, Marzio & Gallo, Massimo, 1996. "Environmental taxation and unemployment: Some evidence on the 'double dividend hypothesis' in Europe," Journal of Public Economics, Elsevier, vol. 62(1-2), pages 141-181, October.
    4. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    5. Czajkowski, Mikolaj & Scasný, Milan, 2010. "Study on benefit transfer in an international setting. How to improve welfare estimates in the case of the countries' income heterogeneity?," Ecological Economics, Elsevier, vol. 69(12), pages 2409-2416, October.
    6. Syri, Sanna & Amann, Markus & Capros, Pantelis & Mantzos, Leonidas & Cofala, Janusz & Klimont, Zbigniew, 2001. "Low-CO2 energy pathways and regional air pollution in Europe," Energy Policy, Elsevier, vol. 29(11), pages 871-884, September.
    7. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "WITCH. A World Induced Technical Change Hybrid Model," Working Papers 2006_46, Department of Economics, University of Venice "Ca' Foscari".
    8. Valentina Bosetti & Emanuele Massetti & Massimo Tavoni, 2007. "The WITCH Model. Structure, Baseline, Solutions," Working Papers 2007.10, Fondazione Eni Enrico Mattei.
    9. Lukáš Rečka & Milan Ščasný, 2013. "Analýza dopadů regulace v českém elektroenergetickém systému - aplikace dynamického lineárního modelu Message [Environmental Regulation Impacts on the Czech Power System by the Dynamic Linear Optim," Politická ekonomie, Prague University of Economics and Business, vol. 2013(2), pages 248-273.
    10. Bollen, Johannes & van der Zwaan, Bob & Brink, Corjan & Eerens, Hans, 2009. "Local air pollution and global climate change: A combined cost-benefit analysis," Resource and Energy Economics, Elsevier, vol. 31(3), pages 161-181, August.
    11. Britt Groosman & Nicholas Muller & Erin O’Neill-Toy, 2011. "The Ancillary Benefits from Climate Policy in the United States," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 50(4), pages 585-603, December.
    12. Nicholas Z. Muller & Robert Mendelsohn & William Nordhaus, 2011. "Environmental Accounting for Pollution in the United States Economy," American Economic Review, American Economic Association, vol. 101(5), pages 1649-1675, August.
    13. Scott Barrett & Robert Stavins, 2003. "Increasing Participation and Compliance in International Climate Change Agreements," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 3(4), pages 349-376, December.
    14. Ian Parry & Chandara Veung & Dirk Heine, 2015. "How Much Carbon Pricing Is In Countries’ Own Interests? The Critical Role Of Co-Benefits," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 1-26, November.
    15. Pearce, David W, 1991. "The Role of Carbon Taxes in Adjusting to Global Warming," Economic Journal, Royal Economic Society, vol. 101(407), pages 938-948, July.
    16. Dudek, Dan & Golub, Alexander & Strukova, Elena, 2003. "Ancillary Benefits of Reducing Greenhouse Gas Emissions in Transitional Economies," World Development, Elsevier, vol. 31(10), pages 1759-1769, October.
    17. Ian W.H. Parry & John Norregaard & Dirk Heine, 2012. "Environmental Tax Reform: Principles from Theory and Practice," Annual Review of Resource Economics, Annual Reviews, vol. 4(1), pages 101-125, August.
    18. A. Bovenberg, 1999. "Green Tax Reforms and the Double Dividend: an Updated Reader's Guide," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 6(3), pages 421-443, August.
    19. Enrica De Cian & Valentina Bosetti & Alessandra Sgobbi & Massimo Tavoni, 2009. "The 2008 WITCH Model: New Model Features and Baseline," Working Papers 2009.85, Fondazione Eni Enrico Mattei.
    20. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    21. Anne Brendemoen & Haakon Vennemo, 1994. "A Climate Treaty and the Norwegian Economy: A CGE Assessment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 77-93.
    22. James K. Hammitt, 2007. "Valuing Changes in Mortality Risk: Lives Saved Versus Life Years Saved," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 1(2), pages 228-240, Summer.
    23. Muller, Nicholas Z. & Mendelsohn, Robert, 2007. "Measuring the damages of air pollution in the United States," Journal of Environmental Economics and Management, Elsevier, vol. 54(1), pages 1-14, July.
    24. Ian W.H. Parry & John Norregaard & Dirk Heine, 2012. "Environmental Tax Reform; Principles from Theory and Practice to Date," IMF Working Papers 2012/180, International Monetary Fund.
    25. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    26. Ščasný, Milan & Rečka, Lukáš & Balajka, Jiří, 2012. "What Is Effect of Climate Change Mitigating Policies on Energy Sector in Slovakia?," MPRA Paper 66606, University Library of Munich, Germany.
    27. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    28. Krook Riekkola, Anna & Ahlgren, Erik O. & Söderholm, Patrik, 2011. "Ancillary benefits of climate policy in a small open economy: The case of Sweden," Energy Policy, Elsevier, vol. 39(9), pages 4985-4998, September.
    29. Pittel, Karen & Rübbelke, Dirk T.G., 2008. "Climate policy and ancillary benefits: A survey and integration into the modelling of international negotiations on climate change," Ecological Economics, Elsevier, vol. 68(1-2), pages 210-220, December.
    30. William Nordhaus, 2014. "Estimates of the Social Cost of Carbon: Concepts and Results from the DICE-2013R Model and Alternative Approaches," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(1), pages 000.
    31. Lawrence Goulder, 1995. "Environmental taxation and the double dividend: A reader's guide," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 2(2), pages 157-183, August.
    32. van Vuuren, D.P. & Cofala, J. & Eerens, H.E. & Oostenrijk, R. & Heyes, C. & Klimont, Z. & den Elzen, M.G.J. & Amann, M., 2006. "Exploring the ancillary benefits of the Kyoto Protocol for air pollution in Europe," Energy Policy, Elsevier, vol. 34(4), pages 444-460, March.
    33. Burtraw, Dallas & Krupnick, Alan & Palmer, Karen & Paul, Anthony & Toman, Michael & Bloyd, Cary, 2003. "Ancillary benefits of reduced air pollution in the US from moderate greenhouse gas mitigation policies in the electricity sector," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 650-673, May.
    34. Boyd Roy & Krutilla Kerry & Viscusi W. Kip, 1995. "Energy Taxation as a Policy Instrument to Reduce CO2 Emissions: A Net Benefit Analysis," Journal of Environmental Economics and Management, Elsevier, vol. 29(1), pages 1-24, July.
    35. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    36. Nicholas Z. Muller & Robert Mendelsohn, 2009. "Efficient Pollution Regulation: Getting the Prices Right," American Economic Review, American Economic Association, vol. 99(5), pages 1714-1739, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karel Janda & Jan Málek & Lukáš Rečka, 2017. "Vliv obnovitelných zdrojů na českou soustavu přenosu elektřiny [The Impact of Renewable Energy Sources on the Czech Electricity Transmission System]," Politická ekonomie, Prague University of Economics and Business, vol. 2017(6), pages 728-750.
    2. Frederick Ploeg & Armon Rezai, 2019. "Simple Rules for Climate Policy and Integrated Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 77-108, January.
    3. Rick Van der Ploeg & Armon Rezai, 2017. "The Simple Arithmetic of Carbon Pricing and Stranded Assets," OxCarre Working Papers 197, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    4. Milan Ščasný & Iva Zvěřinová & Mikolaj Czajkowski & Eva Kyselá & Katarzyna Zagórska, 2017. "Public acceptability of climate change mitigation policies: a discrete choice experiment," Climate Policy, Taylor & Francis Journals, vol. 17(0), pages 111-130, June.
    5. Rečka, L. & Ščasný, M., 2016. "Impacts of carbon pricing, brown coal availability and gas cost on Czech energy system up to 2050," Energy, Elsevier, vol. 108(C), pages 19-33.
    6. Karel Janda & Jan Malek & Lukas Recka, 2017. "The Influence of Renewable Energy Sources on the Czech Electricity Transmission System," Working Papers IES 2017/06, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Mar 2017.
    7. Mach, Radomír & Weinzettel, Jan & Ščasný, Milan, 2018. "Environmental Impact of Consumption by Czech Households: Hybrid Input–Output Analysis Linked to Household Consumption Data," Ecological Economics, Elsevier, vol. 149(C), pages 62-73.
    8. Paul Lehmann & Jos Sijm & Erik Gawel & Sebastian Strunz & Unnada Chewpreecha & Jean-Francois Mercure & Hector Pollitt, 2019. "Addressing multiple externalities from electricity generation: a case for EU renewable energy policy beyond 2020?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 255-283, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Gago & Xavier Labandeira & Xiral López Otero, 2014. "A Panorama on Energy Taxes and Green Tax Reforms," Hacienda Pública Española / Review of Public Economics, IEF, vol. 208(1), pages 145-190, March.
    2. James Boyce & Manuel Pastor, 2012. "Cooling the Planet, Clearing the Air: Climate Policy, Carbon Pricing, and Co-Benefits," Published Studies cooling_the_planet_sept20, Political Economy Research Institute, University of Massachusetts at Amherst.
    3. Roberto Roson & Richard Damania, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity: an Assessment of Alternative Scenarios," IEFE Working Papers 84, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    4. Vanessa J. Schweizer, 2020. "Reflections on cross-impact balances, a systematic method constructing global socio-technical scenarios for climate change research," Climatic Change, Springer, vol. 162(4), pages 1705-1722, October.
    5. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    6. Miftakhova, Alena & Judd, Kenneth L. & Lontzek, Thomas S. & Schmedders, Karl, 2020. "Statistical approximation of high-dimensional climate models," Journal of Econometrics, Elsevier, vol. 214(1), pages 67-80.
    7. Barron, Robert & McJeon, Haewon, 2015. "The differential impact of low-carbon technologies on climate change mitigation cost under a range of socioeconomic and climate policy scenarios," Energy Policy, Elsevier, vol. 80(C), pages 264-274.
    8. Enrica Cian & Ian Sue Wing, 2019. "Global Energy Consumption in a Warming Climate," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 365-410, February.
    9. Miho Kamei & Alessio Mastrucci & Bas J. van Ruijven, 2021. "A Future Outlook of Narratives for the Built Environment in Japan," Sustainability, MDPI, Open Access Journal, vol. 13(4), pages 1-20, February.
    10. Juliette N. Rooney-Varga & Florian Kapmeier & John D. Sterman & Andrew P. Jones & Michele Putko & Kenneth Rath, 2020. "The Climate Action Simulation," Simulation & Gaming, , vol. 51(2), pages 114-140, April.
    11. Dumortier, Jerome & Carriquiry, Miguel A. & Elobeid, Amani E., 2020. "Impact of Climate Change on Global Agricultural Markets under Different Shared Socioeconomic Pathways," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304390, Agricultural and Applied Economics Association.
    12. Angel Manuel Benitez Rodriguez & Ian Michael Trotter, 2019. "Climate change scenarios for Paraguayan power demand 2017–2050," Climatic Change, Springer, vol. 156(3), pages 425-445, October.
    13. Silva Herran, Diego & Tachiiri, Kaoru & Matsumoto, Ken'ichi, 2019. "Global energy system transformations in mitigation scenarios considering climate uncertainties," Applied Energy, Elsevier, vol. 243(C), pages 119-131.
    14. Guillaume Rohat & Johannes Flacke & Hy Dao & Martin Maarseveen, 2018. "Co-use of existing scenario sets to extend and quantify the shared socioeconomic pathways," Climatic Change, Springer, vol. 151(3), pages 619-636, December.
    15. Gregory J. Scott & Athanasios Petsakos & Henry Juarez, 2019. "Climate change, food security, and future scenarios for potato production in India to 2030," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(1), pages 43-56, February.
    16. Fujimori, S. & Kainuma, M. & Masui, T. & Hasegawa, T. & Dai, H., 2014. "The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation," Energy Policy, Elsevier, vol. 75(C), pages 379-391.
    17. Hans van Meijl & Petr Havlik & Hermann Lotze-Campen & Elke Stehfest & Peter Witzke & Ignacio Perez Dominguez & Benjamin Bodirsky & Michiel van Dijk & Jonathan Doelman & Thomas Fellmann & Florian Humpe, 2017. "Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50)," JRC Working Papers JRC106835, Joint Research Centre (Seville site).
    18. Turnheim, Bruno & Nykvist, Björn, 2019. "Opening up the feasibility of sustainability transitions pathways (STPs): Representations, potentials, and conditions," Research Policy, Elsevier, vol. 48(3), pages 775-788.
    19. Kiula, Olga & Markandya, Anil & Ščasný, Milan & Menkyna Tsuchimoto, Fusako, 2014. "The Economic and Environmental Effects of Taxing Air Pollutants and CO2: Lessons from a Study of the Czech Republic," MPRA Paper 66599, University Library of Munich, Germany, revised Oct 2015.
    20. Trotter, Ian Michael & Féres, José Gustavo & Bolkesjø, Torjus Folsland & de Hollanda, Lavínia Rocha, 2015. "Simulating Brazilian Electricity Demand Under Climate Change Scenarios," Working Papers in Applied Economics 208689, Universidade Federal de Vicosa, Departamento de Economia Rural.

    More about this item

    Keywords

    Environmental Economics and Policy;

    JEL classification:

    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:feemcl:230586. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.