IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v343y2023ics0306261923005494.html
   My bibliography  Save this article

Smart charging and discharging of electric vehicles based on multi-objective robust optimization in smart cities

Author

Listed:
  • Yao, Zhaosheng
  • Wang, Zhiyuan
  • Ran, Lun

Abstract

The combination of low-carbon electricity and electric vehicles brings considerable economic and environmental benefits but also introduces challenges due to the complexity and uncertainty of system synergies in smart cities. To fully exploit the advantages of photovoltaic power generation and electric vehicles and to release the potential of electric vehicles as distributed energy storage facilities, this paper develops a multi-objective robust optimization framework that accounts for the benefits of multiple parties of smart charging and discharging systems and depicts a bounded uncertainty set based on partial statistical information from real data. The original model is scalarized and linearized using efficient methods such as max-ordering scalarization and the robust augmented weighted Tchebycheff to facilitate the solution. Moreover, a smart charging and discharging scheduling strategy based on a convergent demand response strategy is proposed to achieve better demand-side management. A case study, based on real data from Car2go and the solar radiation intensity in Portland, Oregon, shows that (1) The methodological framework effectively addresses the smart scheduling issue that considers the interests of multiple parties in complex systems with uncertainty, in contrast to conventional methods. (2) The designed convergent demand response strategy promotes photovoltaic power generation and charging demand synergy and achieves regulation effects such as peak shaving and valley filling. (3) The proposed method and strategy yield good results in multiple aspects, such as charging costs, load regulation, and clean energy utilization, while enhancing the economic and environmental benefits.

Suggested Citation

  • Yao, Zhaosheng & Wang, Zhiyuan & Ran, Lun, 2023. "Smart charging and discharging of electric vehicles based on multi-objective robust optimization in smart cities," Applied Energy, Elsevier, vol. 343(C).
  • Handle: RePEc:eee:appene:v:343:y:2023:i:c:s0306261923005494
    DOI: 10.1016/j.apenergy.2023.121185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923005494
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Apostolaki-Iosifidou, Elpiniki & Codani, Paul & Kempton, Willett, 2017. "Measurement of power loss during electric vehicle charging and discharging," Energy, Elsevier, vol. 127(C), pages 730-742.
    2. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Gabriel R. Bitran, 1980. "Linear Multiple Objective Problems with Interval Coefficients," Management Science, INFORMS, vol. 26(7), pages 694-706, July.
    4. Fliege, Jörg & Werner, Ralf, 2014. "Robust multiobjective optimization & applications in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 422-433.
    5. Das, Utpal Kumar & Tey, Kok Soon & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Idris, Moh Yamani Idna & Van Deventer, Willem & Horan, Bend & Stojcevski, Alex, 2018. "Forecasting of photovoltaic power generation and model optimization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 912-928.
    6. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    7. Eric Hittinger, 2017. "Distributed generation: Residential storage comes at a cost," Nature Energy, Nature, vol. 2(2), pages 1-2, February.
    8. Fathabadi, Hassan, 2015. "Utilization of electric vehicles and renewable energy sources used as distributed generators for improving characteristics of electric power distribution systems," Energy, Elsevier, vol. 90(P1), pages 1100-1110.
    9. Yu, Zhenyu & Lu, Fei & Zou, Yu & Yang, Xudong, 2022. "Quantifying the real-time energy flexibility of commuter plug-in electric vehicles in an office building considering photovoltaic and load uncertainty," Applied Energy, Elsevier, vol. 321(C).
    10. Zhou, Kaile & Cheng, Lexin & Lu, Xinhui & Wen, Lulu, 2020. "Scheduling model of electric vehicles charging considering inconvenience and dynamic electricity prices," Applied Energy, Elsevier, vol. 276(C).
    11. Michael Wolinetz & Jonn Axsen & Jotham Peters & Curran Crawford, 2018. "Simulating the value of electric-vehicle–grid integration using a behaviourally realistic model," Nature Energy, Nature, vol. 3(2), pages 132-139, February.
    12. Ehrgott, Matthias & Ide, Jonas & Schöbel, Anita, 2014. "Minmax robustness for multi-objective optimization problems," European Journal of Operational Research, Elsevier, vol. 239(1), pages 17-31.
    13. DeForest, Nicholas & MacDonald, Jason S. & Black, Douglas R., 2018. "Day ahead optimization of an electric vehicle fleet providing ancillary services in the Los Angeles Air Force Base vehicle-to-grid demonstration," Applied Energy, Elsevier, vol. 210(C), pages 987-1001.
    14. Dixon, James & Bukhsh, Waqquas & Edmunds, Calum & Bell, Keith, 2020. "Scheduling electric vehicle charging to minimise carbon emissions and wind curtailment," Renewable Energy, Elsevier, vol. 161(C), pages 1072-1091.
    15. Schmidt, M. & Schöbel, Anita & Thom, Lisa, 2019. "Min-ordering and max-ordering scalarization methods for multi-objective robust optimization," European Journal of Operational Research, Elsevier, vol. 275(2), pages 446-459.
    16. Kuhn, K. & Raith, A. & Schmidt, M. & Schöbel, A., 2016. "Bi-objective robust optimisation," European Journal of Operational Research, Elsevier, vol. 252(2), pages 418-431.
    17. Han, Xiaojuan & Wei, Zixuan & Hong, Zhenpeng & Zhao, Song, 2020. "Ordered charge control considering the uncertainty of charging load of electric vehicles based on Markov chain," Renewable Energy, Elsevier, vol. 161(C), pages 419-434.
    18. Dranichak, Garrett M. & Wiecek, Margaret M., 2019. "On highly robust efficient solutions to uncertain multiobjective linear programs," European Journal of Operational Research, Elsevier, vol. 273(1), pages 20-30.
    19. Wei, Hongqian & Zhang, Youtong & Wang, Yongzhen & Hua, Weiqi & Jing, Rui & Zhou, Yue, 2022. "Planning integrated energy systems coupling V2G as a flexible storage," Energy, Elsevier, vol. 239(PB).
    20. Luo, Qingsong & Zhou, Yimin & Hou, Weicheng & Peng, Lei, 2022. "A hierarchical blockchain architecture based V2G market trading system," Applied Energy, Elsevier, vol. 307(C).
    21. Salvia, Monica & Reckien, Diana & Pietrapertosa, Filomena & Eckersley, Peter & Spyridaki, Niki-Artemis & Krook-Riekkola, Anna & Olazabal, Marta & De Gregorio Hurtado, Sonia & Simoes, Sofia G. & Genele, 2021. "Will climate mitigation ambitions lead to carbon neutrality? An analysis of the local-level plans of 327 cities in the EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    22. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2015. "Robust solutions to multi-objective linear programs with uncertain data," European Journal of Operational Research, Elsevier, vol. 242(3), pages 730-743.
    23. Wei Qi & Zuo‐Jun Max Shen, 2019. "A Smart‐City Scope of Operations Management," Production and Operations Management, Production and Operations Management Society, vol. 28(2), pages 393-406, February.
    24. Zhang, Xizheng & Wang, Zeyu & Lu, Zhangyu, 2022. "Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm," Applied Energy, Elsevier, vol. 306(PA).
    25. Jonas Ide & Anita Schöbel, 2016. "Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 235-271, January.
    26. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Topologies for large scale photovoltaic power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 309-319.
    27. Dallinger, David & Gerda, Schubert & Wietschel, Martin, 2013. "Integration of intermittent renewable power supply using grid-connected vehicles – A 2030 case study for California and Germany," Applied Energy, Elsevier, vol. 104(C), pages 666-682.
    28. Bokrantz, Rasmus & Fredriksson, Albin, 2017. "Necessary and sufficient conditions for Pareto efficiency in robust multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 262(2), pages 682-692.
    29. Pearre, Nathaniel S. & Ribberink, Hajo, 2019. "Review of research on V2X technologies, strategies, and operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 61-70.
    30. Wu, Fei & Sioshansi, Ramteen, 2017. "A two-stage stochastic optimization model for scheduling electric vehicle charging loads to relieve distribution-system constraints," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 55-82.
    31. Hassanzadeh, Farhad & Nemati, Hamid & Sun, Minghe, 2014. "Robust optimization for interactive multiobjective programming with imprecise information applied to R&D project portfolio selection," European Journal of Operational Research, Elsevier, vol. 238(1), pages 41-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhanasingh Sivalinga Vijayan & Eugeniusz Koda & Arvindan Sivasuriyan & Jan Winkler & Parthiban Devarajan & Ramamoorthy Sanjay Kumar & Aleksandra Jakimiuk & Piotr Osinski & Anna Podlasek & Magdalena Da, 2023. "Advancements in Solar Panel Technology in Civil Engineering for Revolutionizing Renewable Energy Solutions—A Review," Energies, MDPI, vol. 16(18), pages 1-33, September.
    2. Jun Jia & Guangming Zhang & Xiaoxiong Zhou & Mingxiang Zhu & Zhihan Shi & Xiaodong Lv, 2024. "Consideration of Multi-Objective Stochastic Optimization in Inter-Annual Optimization Scheduling of Cascade Hydropower Stations," Energies, MDPI, vol. 17(4), pages 1-18, February.
    3. Heping Jia & Qianxin Ma & Yun Li & Mingguang Liu & Dunnan Liu, 2023. "Integrating Electric Vehicles to Power Grids: A Review on Modeling, Regulation, and Market Operation," Energies, MDPI, vol. 16(17), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schöbel, Anita & Zhou-Kangas, Yue, 2021. "The price of multiobjective robustness: Analyzing solution sets to uncertain multiobjective problems," European Journal of Operational Research, Elsevier, vol. 291(2), pages 782-793.
    2. Groetzner, Patrick & Werner, Ralf, 2022. "Multiobjective optimization under uncertainty: A multiobjective robust (relative) regret approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 101-115.
    3. Botte, Marco & Schöbel, Anita, 2019. "Dominance for multi-objective robust optimization concepts," European Journal of Operational Research, Elsevier, vol. 273(2), pages 430-440.
    4. Yue Zhou-Kangas & Kaisa Miettinen, 2019. "Decision making in multiobjective optimization problems under uncertainty: balancing between robustness and quality," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 391-413, June.
    5. Qi, Yue & Liao, Kezhi & Liu, Tongyang & Zhang, Yu, 2022. "Originating multiple-objective portfolio selection by counter-COVID measures and analytically instigating robust optimization by mean-parameterized nondominated paths," Operations Research Perspectives, Elsevier, vol. 9(C).
    6. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2018. "Guaranteeing highly robust weakly efficient solutions for uncertain multi-objective convex programs," European Journal of Operational Research, Elsevier, vol. 270(1), pages 40-50.
    7. Schmidt, M. & Schöbel, Anita & Thom, Lisa, 2019. "Min-ordering and max-ordering scalarization methods for multi-objective robust optimization," European Journal of Operational Research, Elsevier, vol. 275(2), pages 446-459.
    8. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Dranichak, Garrett M. & Wiecek, Margaret M., 2019. "On highly robust efficient solutions to uncertain multiobjective linear programs," European Journal of Operational Research, Elsevier, vol. 273(1), pages 20-30.
    10. Morteza Rahimi & Majid Soleimani-damaneh, 2018. "Robustness in Deterministic Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 137-162, October.
    11. Caprari, Elisa & Cerboni Baiardi, Lorenzo & Molho, Elena, 2019. "Primal worst and dual best in robust vector optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 830-838.
    12. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Elisa Caprari & Lorenzo Cerboni Baiardi & Elena Molho, 2022. "Scalarization and robustness in uncertain vector optimization problems: a non componentwise approach," Journal of Global Optimization, Springer, vol. 84(2), pages 295-320, October.
    14. Engau, Alexander & Sigler, Devon, 2020. "Pareto solutions in multicriteria optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 357-368.
    15. Bokrantz, Rasmus & Fredriksson, Albin, 2017. "Necessary and sufficient conditions for Pareto efficiency in robust multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 262(2), pages 682-692.
    16. Jiawei Chen & Elisabeth Köbis & Jen-Chih Yao, 2019. "Optimality Conditions and Duality for Robust Nonsmooth Multiobjective Optimization Problems with Constraints," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 411-436, May.
    17. Pornpimon Boriwan & Thanathorn Phoka & Narin Petrot, 2022. "The Lightly Robust Max-Ordering Solution Concept for Uncertain Multiobjective Optimization Problems: An Ambulance Location Problem with Unavailability," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    18. Gabriele Eichfelder & Corinna Krüger & Anita Schöbel, 2017. "Decision uncertainty in multiobjective optimization," Journal of Global Optimization, Springer, vol. 69(2), pages 485-510, October.
    19. Fakhar, Majid & Mahyarinia, Mohammad Reza & Zafarani, Jafar, 2018. "On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization," European Journal of Operational Research, Elsevier, vol. 265(1), pages 39-48.
    20. Kuhn, K. & Raith, A. & Schmidt, M. & Schöbel, A., 2016. "Bi-objective robust optimisation," European Journal of Operational Research, Elsevier, vol. 252(2), pages 418-431.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:343:y:2023:i:c:s0306261923005494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.