Author
Listed:
- Mingyu Kang
(Department of Industrial and Information Systems Engineering, Soongsil University, Seoul 06978, Republic of Korea)
- Bosung Lee
(Department of Industrial and Information Systems Engineering, Soongsil University, Seoul 06978, Republic of Korea)
- Younsoo Lee
(Department of Industrial and Information Systems Engineering, Soongsil University, Seoul 06978, Republic of Korea)
Abstract
Electric buses (E-buses) are gaining popularity in urban transportation due to their environmental benefits and operational efficiency. However, large-scale integration of E-buses and Vehicle-to-Grid (V2G) technology introduces scheduling complexities for charging and discharging operations arising from uncertainties in energy consumption and load reduction requests. While prior studies have explored electric vehicle scheduling, few have considered robust optimization for E-bus fleets under uncertain parameters such as trip energy consumption and load reduction requests. This paper proposes a robust optimization approach for the charging and discharging scheduling problem at E-bus depots equipped with V2G. The problem is formulated as a robust mixed-integer linear program (MILP), incorporating real-world operational constraints including dual-port chargers, emergency charging, and demand response. A budgeted uncertainty set is used to model uncertainty in energy consumptions and discharging requests, providing a balance between robustness and conservatism. To ensure tractability, the robust counterpart is reformulated into a solvable MILP using duality theory. The effectiveness of the proposed model is validated through extensive computational experiments, including simulation-based performance assessments and out-of-sample tests. Experiment results demonstrate superior profitability and reliability compared to deterministic and box-uncertainty models, highlighting the practical effectiveness of the proposed approach.
Suggested Citation
Mingyu Kang & Bosung Lee & Younsoo Lee, 2025.
"A Robust Optimization Approach for E-Bus Charging and Discharging Scheduling with Vehicle-to-Grid Integration,"
Mathematics, MDPI, vol. 13(9), pages 1-25, April.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:9:p:1380-:d:1641024
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1380-:d:1641024. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.