IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v383y2025ics0306261925001035.html
   My bibliography  Save this article

Quantifying spatio-temporal carbon intensity within a city using large-scale smart meter data: Unveiling the impact of behind-the-meter generation

Author

Listed:
  • Sugano, Soma
  • Fujimoto, Yu
  • Ihara, Yuto
  • Mitsuoka, Masataka
  • Tanabe, Shin-ichi
  • Hayashi, Yasuhiro

Abstract

This study introduces a novel method for calculating spatio-temporal carbon intensity variations within a city using smart meter data. By integrating smart meter data with solar radiation data from weather satellites, the method predicts electricity demand and solar power generation across 1-km grid areas, achieving higher spatial resolution for carbon intensity distribution than existing models. Accounting for behind-the-meter self-consumption enables dynamic visualisation of carbon intensity variations driven by renewable energy adoption in localised urban areas, offering a more detailed assessment compared to conventional methods focusing solely on temporal fluctuations in the grid's energy mix. The method was applied to a dataset of approximately 410,000 smart meters in Utsunomiya City, Japan. Findings reveal that carbon intensity variations are affected by weather and seasonal changes. Notably, suburban areas with a higher proportion of prosumers exhibit lower carbon intensity than urban centres, highlighting significant intra-city variations linked to local renewable energy utilisation. This method can enhance the efficient use of distributed energy resources within cities and support prioritising low-carbon renewable energy through strategies such as demand response program development, optimising electric vehicle charging schedules, and identifying priority areas for photovoltaic and battery storage deployment.

Suggested Citation

  • Sugano, Soma & Fujimoto, Yu & Ihara, Yuto & Mitsuoka, Masataka & Tanabe, Shin-ichi & Hayashi, Yasuhiro, 2025. "Quantifying spatio-temporal carbon intensity within a city using large-scale smart meter data: Unveiling the impact of behind-the-meter generation," Applied Energy, Elsevier, vol. 383(C).
  • Handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925001035
    DOI: 10.1016/j.apenergy.2025.125373
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925001035
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125373?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Kangping & Wang, Fei & Mi, Zengqiang & Fotuhi-Firuzabad, Mahmoud & Duić, Neven & Wang, Tieqiang, 2019. "Capacity and output power estimation approach of individual behind-the-meter distributed photovoltaic system for demand response baseline estimation," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Stainsby, Wendell & Zimmerle, Daniel & Duggan, Gerald P., 2020. "A method to estimate residential PV generation from net-metered load data and system install date," Applied Energy, Elsevier, vol. 267(C).
    4. Liu, Chao Charles & Chen, Hongkun & Shi, Jing & Chen, Lei, 2022. "Self-supervised learning method for consumer-level behind-the-meter PV estimation," Applied Energy, Elsevier, vol. 326(C).
    5. Rupp, Matthias & Handschuh, Nils & Rieke, Christian & Kuperjans, Isabel, 2019. "Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany," Applied Energy, Elsevier, vol. 237(C), pages 618-634.
    6. Yao, Zhaosheng & Wang, Zhiyuan & Ran, Lun, 2023. "Smart charging and discharging of electric vehicles based on multi-objective robust optimization in smart cities," Applied Energy, Elsevier, vol. 343(C).
    7. Pan, Keda & Chen, Zhaohua & Lai, Chun Sing & Xie, Changhong & Wang, Dongxiao & Li, Xuecong & Zhao, Zhuoli & Tong, Ning & Lai, Loi Lei, 2022. "An unsupervised data-driven approach for behind-the-meter photovoltaic power generation disaggregation," Applied Energy, Elsevier, vol. 309(C).
    8. Bo Tranberg & Olivier Corradi & Bruno Lajoie & Thomas Gibon & Iain Staffell & Gorm Bruun Andresen, 2018. "Real-Time Carbon Accounting Method for the European Electricity Markets," Papers 1812.06679, arXiv.org, revised May 2019.
    9. Fujimoto, Yu & Fujita, Megumi & Hayashi, Yasuhiro, 2021. "Deep reservoir architecture for short-term residential load forecasting: An online learning scheme for edge computing," Applied Energy, Elsevier, vol. 298(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Ziyu & Ge, Xinxin & Lu, Jinling & Wang, Fei, 2025. "Unsupervised disaggregation of aggregated net load considering behind-the-meter PV based on virtual PV sample construction," Applied Energy, Elsevier, vol. 381(C).
    2. Liu, Chao Charles & Chen, Hongkun & Shi, Jing & Chen, Lei, 2022. "Self-supervised learning method for consumer-level behind-the-meter PV estimation," Applied Energy, Elsevier, vol. 326(C).
    3. Wang, Yuqing & Fu, Wenjie & Wang, Junlong & Zhen, Zhao & Wang, Fei, 2024. "Ultra-short-term distributed PV power forecasting for virtual power plant considering data-scarce scenarios," Applied Energy, Elsevier, vol. 373(C).
    4. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    5. Kang, Zixuan & Ye, Zhongnan & Lam, Chor-Man & Hsu, Shu-Chien, 2023. "Sustainable electric vehicle charging coordination: Balancing CO2 emission reduction and peak power demand shaving," Applied Energy, Elsevier, vol. 349(C).
    6. Yuan-Kang Wu & Yi-Hui Lai & Cheng-Liang Huang & Nguyen Thi Bich Phuong & Wen-Shan Tan, 2022. "Artificial Intelligence Applications in Estimating Invisible Solar Power Generation," Energies, MDPI, vol. 15(4), pages 1-18, February.
    7. Pan, Keda & Chen, Zhaohua & Lai, Chun Sing & Xie, Changhong & Wang, Dongxiao & Li, Xuecong & Zhao, Zhuoli & Tong, Ning & Lai, Loi Lei, 2022. "An unsupervised data-driven approach for behind-the-meter photovoltaic power generation disaggregation," Applied Energy, Elsevier, vol. 309(C).
    8. Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    9. Duan, Ditao & Poursoleiman, Roza, 2021. "Modified teaching-learning-based optimization by orthogonal learning for optimal design of an electric vehicle charging station," Utilities Policy, Elsevier, vol. 72(C).
    10. Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
    11. Will, Christian & Zimmermann, Florian & Ensslen, Axel & Fraunholz, Christoph & Jochem, Patrick & Keles, Dogan, 2024. "Can electric vehicle charging be carbon neutral? Uniting smart charging and renewables," Applied Energy, Elsevier, vol. 371(C).
    12. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    13. Bokde, Neeraj Dhanraj & Tranberg, Bo & Andresen, Gorm Bruun, 2021. "Short-term CO2 emissions forecasting based on decomposition approaches and its impact on electricity market scheduling," Applied Energy, Elsevier, vol. 281(C).
    14. Guwen Tang & Meng Zhang & Fei Bu, 2023. "Vehicle Environmental Efficiency Evaluation in Different Regions in China: A Combination of the Life Cycle Analysis (LCA) and Two-Stage Data Envelopment Analysis (DEA) Methods," Sustainability, MDPI, vol. 15(15), pages 1-24, August.
    15. Wenz, Klaus-Peter & Serrano-Guerrero, Xavier & Barragán-Escandón, Antonio & González, L.G. & Clairand, Jean-Michel, 2021. "Route prioritization of urban public transportation from conventional to electric buses: A new methodology and a study of case in an intermediate city of Ecuador," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    16. Zacharopoulos, Leon & Thonemann, Nils & Dumeier, Marcel & Geldermann, Jutta, 2023. "Environmental optimization of the charge of battery electric vehicles," Applied Energy, Elsevier, vol. 329(C).
    17. Astriani, Yuli & Shafiullah, GM & Shahnia, Farhad, 2021. "Incentive determination of a demand response program for microgrids," Applied Energy, Elsevier, vol. 292(C).
    18. Szabolcs Kocsis Szürke & Gábor Saly & István Lakatos, 2024. "Analyzing Energy Efficiency and Battery Supervision in Electric Bus Integration for Improved Urban Transport Sustainability," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    19. Yao, Zhaosheng & Ran, Lun & Wang, Zhiyuan & Guo, Xian, 2024. "Integrated management of electric vehicle sharing system operations and Internet of Vehicles energy scheduling," Energy, Elsevier, vol. 309(C).
    20. Lind, Leandro & Chaves-Ávila, José Pablo & Valarezo, Orlando & Sanjab, Anibal & Olmos, Luis, 2024. "Baseline methods for distributed flexibility in power systems considering resource, market, and product characteristics," Utilities Policy, Elsevier, vol. 86(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925001035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.