IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v237y2019icp618-634.html
   My bibliography  Save this article

Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany

Author

Listed:
  • Rupp, Matthias
  • Handschuh, Nils
  • Rieke, Christian
  • Kuperjans, Isabel

Abstract

In many countries, the replacement of internal combustion engine vehicles (ICEVs) with battery electric vehicles (BEVs) offers an opportunity to reduce CO2 equivalent (CO2eq) emissions in traffic. BEVs have significantly greater energy conversion efficiency from energy storage to wheel (tank-to-wheel [TTW]) and zero tailpipe emissions; these features are in stark contrast to the environmental burdens posed by vehicle production and electricity generation (well-to-tank [WTT]). Since CO2eq emissions from vehicle use of BEVs account for the majority of the entire life cycle emissions, it is important to closely examine the CO2eq intensity of electricity generation, which varies based on the sources of energy in the electricity mix of each country and time of day.

Suggested Citation

  • Rupp, Matthias & Handschuh, Nils & Rieke, Christian & Kuperjans, Isabel, 2019. "Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany," Applied Energy, Elsevier, vol. 237(C), pages 618-634.
  • Handle: RePEc:eee:appene:v:237:y:2019:i:c:p:618-634
    DOI: 10.1016/j.apenergy.2019.01.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919300595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Messagie, Maarten & Mertens, Jan & Oliveira, Luis & Rangaraju, Surendraprabu & Sanfelix, Javier & Coosemans, Thierry & Van Mierlo, Joeri & Macharis, Cathy, 2014. "The hourly life cycle carbon footprint of electricity generation in Belgium, bringing a temporal resolution in life cycle assessment," Applied Energy, Elsevier, vol. 134(C), pages 469-476.
    2. Donateo, T. & Licci, F. & D’Elia, A. & Colangelo, G. & Laforgia, D. & Ciancarelli, F., 2015. "Evaluation of emissions of CO2 and air pollutants from electric vehicles in Italian cities," Applied Energy, Elsevier, vol. 157(C), pages 675-687.
    3. Rangaraju, Surendraprabu & De Vroey, Laurent & Messagie, Maarten & Mertens, Jan & Van Mierlo, Joeri, 2015. "Impacts of electricity mix, charging profile, and driving behavior on the emissions performance of battery electric vehicles: A Belgian case study," Applied Energy, Elsevier, vol. 148(C), pages 496-505.
    4. Troy R. Hawkins & Bhawna Singh & Guillaume Majeau‐Bettez & Anders Hammer Strømman, 2013. "Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 53-64, February.
    5. Xu, Yanzhi & Gbologah, Franklin E. & Lee, Dong-Yeon & Liu, Haobing & Rodgers, Michael O. & Guensler, Randall L., 2015. "Assessment of alternative fuel and powertrain transit bus options using real-world operations data: Life-cycle fuel and emissions modeling," Applied Energy, Elsevier, vol. 154(C), pages 143-159.
    6. Choi, Hyunhong & Shin, Jungwoo & Woo, JongRoul, 2018. "Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact," Energy Policy, Elsevier, vol. 121(C), pages 13-24.
    7. Coester, Andreas & Hofkes, Marjan W. & Papyrakis, Elissaios, 2018. "Economics of renewable energy expansion and security of supply: A dynamic simulation of the German electricity market," Applied Energy, Elsevier, vol. 231(C), pages 1268-1284.
    8. Ribau, João P. & Silva, Carla M. & Sousa, João M.C., 2014. "Efficiency, cost and life cycle CO2 optimization of fuel cell hybrid and plug-in hybrid urban buses," Applied Energy, Elsevier, vol. 129(C), pages 320-335.
    9. Finenko, Anton & Cheah, Lynette, 2016. "Temporal CO2 emissions associated with electricity generation: Case study of Singapore," Energy Policy, Elsevier, vol. 93(C), pages 70-79.
    10. Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
    11. Gagnon, Luc & Belanger, Camille & Uchiyama, Yohji, 2002. "Life-cycle assessment of electricity generation options: The status of research in year 2001," Energy Policy, Elsevier, vol. 30(14), pages 1267-1278, November.
    12. Jochem, Patrick & Babrowski, Sonja & Fichtner, Wolf, 2015. "Assessing CO2 emissions of electric vehicles in Germany in 2030," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 68-83.
    13. Nansai, Keisuke & Tohno, Susumu & Kono, Motoki & Kasahara, Mikio, 2002. "Effects of electric vehicles (EV) on environmental loads with consideration of regional differences of electric power generation and charging characteristic of EV users in Japan," Applied Energy, Elsevier, vol. 71(2), pages 111-125, February.
    14. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations," Energy Policy, Elsevier, vol. 38(1), pages 406-418, January.
    15. Lajunen, Antti & Lipman, Timothy, 2016. "Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses," Energy, Elsevier, vol. 106(C), pages 329-342.
    16. Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
    17. Faria, Ricardo & Marques, Pedro & Moura, Pedro & Freire, Fausto & Delgado, Joaquim & de Almeida, Aníbal T., 2013. "Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 271-287.
    18. Greg Cooney & Troy R. Hawkins & Joe Marriott, 2013. "Life Cycle Assessment of Diesel and Electric Public Transportation Buses," Journal of Industrial Ecology, Yale University, vol. 17(5), pages 689-699, October.
    19. Ercan, Tolga & Zhao, Yang & Tatari, Omer & Pazour, Jennifer A., 2015. "Optimization of transit bus fleet's life cycle assessment impacts with alternative fuel options," Energy, Elsevier, vol. 93(P1), pages 323-334.
    20. Ally, Jamie & Pryor, Trevor, 2016. "Life cycle costing of diesel, natural gas, hybrid and hydrogen fuel cell bus systems: An Australian case study," Energy Policy, Elsevier, vol. 94(C), pages 285-294.
    21. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    22. Gallet, Marc & Massier, Tobias & Hamacher, Thomas, 2018. "Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks," Applied Energy, Elsevier, vol. 230(C), pages 344-356.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harris, Andrew & Soban, Danielle & Smyth, Beatrice M. & Best, Robert, 2018. "Assessing life cycle impacts and the risk and uncertainty of alternative bus technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 569-579.
    2. Harris, Andrew & Soban, Danielle & Smyth, Beatrice M. & Best, Robert, 2020. "A probabilistic fleet analysis for energy consumption, life cycle cost and greenhouse gas emissions modelling of bus technologies," Applied Energy, Elsevier, vol. 261(C).
    3. Kim, Imjung & Kim, Junghun & Lee, Jongsu, 2020. "Dynamic analysis of well-to-wheel electric and hydrogen vehicles greenhouse gas emissions: Focusing on consumer preferences and power mix changes in South Korea," Applied Energy, Elsevier, vol. 260(C).
    4. Borghetti, Fabio & Carra, Martina & Besson, Carlotta & Matarrese, Elisabetta & Maja, Roberto & Barabino, Benedetto, 2024. "Evaluating alternative fuels for a bus fleet: An Italian case," Transport Policy, Elsevier, vol. 154(C), pages 1-15.
    5. Xinkuo Xu & Liyan Han, 2020. "Operational Lifecycle Carbon Value of Bus Electrification in Macau," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    6. Will, Christian & Zimmermann, Florian & Ensslen, Axel & Fraunholz, Christoph & Jochem, Patrick & Keles, Dogan, 2024. "Can electric vehicle charging be carbon neutral? Uniting smart charging and renewables," Applied Energy, Elsevier, vol. 371(C).
    7. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.
    8. Choi, Hyunhong & Shin, Jungwoo & Woo, JongRoul, 2018. "Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact," Energy Policy, Elsevier, vol. 121(C), pages 13-24.
    9. Tolga Ercan & Mehdi Noori & Yang Zhao & Omer Tatari, 2016. "On the Front Lines of a Sustainable Transportation Fleet: Applications of Vehicle-to-Grid Technology for Transit and School Buses," Energies, MDPI, vol. 9(4), pages 1-22, March.
    10. Anders Arvesen & Steve Völler & Christine Roxanne Hung & Volker Krey & Magnus Korpås & Anders Hammer Strømman, 2021. "Emissions of electric vehicle charging in future scenarios: The effects of time of charging," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1250-1263, October.
    11. Mahmoud, Moataz & Garnett, Ryan & Ferguson, Mark & Kanaroglou, Pavlos, 2016. "Electric buses: A review of alternative powertrains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 673-684.
    12. Deidre Wolff & Lluc Canals Casals & Gabriela Benveniste & Cristina Corchero & Lluís Trilla, 2019. "The Effects of Lithium Sulfur Battery Ageing on Second-Life Possibilities and Environmental Life Cycle Assessment Studies," Energies, MDPI, vol. 12(12), pages 1-19, June.
    13. Ma, Xiaolei & Miao, Ran & Wu, Xinkai & Liu, Xianglong, 2021. "Examining influential factors on the energy consumption of electric and diesel buses: A data-driven analysis of large-scale public transit network in Beijing," Energy, Elsevier, vol. 216(C).
    14. Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    15. Ensslen, Axel & Schücking, Maximilian & Jochem, Patrick & Steffens, Henning & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Empirical carbon dioxide emissions of electric vehicles in a French-German commuter fleet test," MPRA Paper 91600, University Library of Munich, Germany.
    16. Ali Saadon Al-Ogaili & Ali Q. Al-Shetwi & Hussein M. K. Al-Masri & Thanikanti Sudhakar Babu & Yap Hoon & Khaled Alzaareer & N. V. Phanendra Babu, 2021. "Review of the Estimation Methods of Energy Consumption for Battery Electric Buses," Energies, MDPI, vol. 14(22), pages 1-28, November.
    17. Mustafa Hamurcu & Tamer Eren, 2020. "Electric Bus Selection with Multicriteria Decision Analysis for Green Transportation," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    18. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Tripathi, Shashwat, 2022. "Life cycle CO₂ footprint reduction comparison of hybrid and electric buses for bus transit networks," Applied Energy, Elsevier, vol. 308(C).
    19. Klaus Kivekäs & Antti Lajunen & Jari Vepsäläinen & Kari Tammi, 2018. "City Bus Powertrain Comparison: Driving Cycle Variation and Passenger Load Sensitivity Analysis," Energies, MDPI, vol. 11(7), pages 1-26, July.
    20. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:237:y:2019:i:c:p:618-634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.