IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p97-d1306282.html
   My bibliography  Save this article

Advances in Short-Term Solar Forecasting: A Review and Benchmark of Machine Learning Methods and Relevant Data Sources

Author

Listed:
  • Franko Pandžić

    (University of Zagreb Faculty of Electrical Engineering and Computing, Unska ulica 3, 10000 Zagreb, Croatia)

  • Tomislav Capuder

    (University of Zagreb Faculty of Electrical Engineering and Computing, Unska ulica 3, 10000 Zagreb, Croatia)

Abstract

Solar forecasting is becoming increasingly important due to the exponential growth in total global solar capacity each year. More photovoltaic (PV) penetration in the grid poses problems for grid stability due to the inherent intermittent and variable nature of PV power production. Therefore, forecasting of solar quantities becomes increasingly important to grid operators and market participants. This review presents the most recent relevant studies focusing on short-term forecasting of solar irradiance and PV power production. Recent research has increasingly turned to machine learning to address this challenge. The paper provides a discussion about building a solar forecasting model, including evaluation measures and machine learning method selection through analysed literature. Given that machine learning is data-driven, the focus of this review has been placed on data sources referenced in the literature. Open-access data sources have been compiled and explored. The main contribution of this paper is the establishment of a benchmark for assessing the performance of solar forecasting models. This benchmark utilizes the mentioned open-source datasets, offering a standardized platform for future research. It serves the crucial purpose of streamlining investigations and facilitating direct comparisons among different forecasting methodologies in the field of solar forecasting.

Suggested Citation

  • Franko Pandžić & Tomislav Capuder, 2023. "Advances in Short-Term Solar Forecasting: A Review and Benchmark of Machine Learning Methods and Relevant Data Sources," Energies, MDPI, vol. 17(1), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:97-:d:1306282
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/97/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/97/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mayer, Martin János & Yang, Dazhi, 2022. "Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Dai, Yeming & Wang, Yanxin & Leng, Mingming & Yang, Xinyu & Zhou, Qiong, 2022. "LOWESS smoothing and Random Forest based GRU model: A short-term photovoltaic power generation forecasting method," Energy, Elsevier, vol. 256(C).
    3. Peter Bauer & Alan Thorpe & Gilbert Brunet, 2015. "The quiet revolution of numerical weather prediction," Nature, Nature, vol. 525(7567), pages 47-55, September.
    4. Mitrentsis, Georgios & Lens, Hendrik, 2022. "An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting," Applied Energy, Elsevier, vol. 309(C).
    5. Han, Shuang & Qiao, Yan-hui & Yan, Jie & Liu, Yong-qian & Li, Li & Wang, Zheng, 2019. "Mid-to-long term wind and photovoltaic power generation prediction based on copula function and long short term memory network," Applied Energy, Elsevier, vol. 239(C), pages 181-191.
    6. Dukhwan Yu & Seowoo Lee & Sangwon Lee & Wonik Choi & Ling Liu, 2020. "Forecasting Photovoltaic Power Generation Using Satellite Images," Energies, MDPI, vol. 13(24), pages 1-15, December.
    7. Brester, Christina & Kallio-Myers, Viivi & Lindfors, Anders V. & Kolehmainen, Mikko & Niska, Harri, 2023. "Evaluating neural network models in site-specific solar PV forecasting using numerical weather prediction data and weather observations," Renewable Energy, Elsevier, vol. 207(C), pages 266-274.
    8. Wang, Fei & Lu, Xiaoxing & Mei, Shengwei & Su, Ying & Zhen, Zhao & Zou, Zubing & Zhang, Xuemin & Yin, Rui & Duić, Neven & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "A satellite image data based ultra-short-term solar PV power forecasting method considering cloud information from neighboring plant," Energy, Elsevier, vol. 238(PC).
    9. Simeunović, Jelena & Schubnel, Baptiste & Alet, Pierre-Jean & Carrillo, Rafael E. & Frossard, Pascal, 2022. "Interpretable temporal-spatial graph attention network for multi-site PV power forecasting," Applied Energy, Elsevier, vol. 327(C).
    10. Donghun Lee & Kwanho Kim, 2019. "Recurrent Neural Network-Based Hourly Prediction of Photovoltaic Power Output Using Meteorological Information," Energies, MDPI, vol. 12(2), pages 1-22, January.
    11. Si, Zhiyuan & Yang, Ming & Yu, Yixiao & Ding, Tingting, 2021. "Photovoltaic power forecast based on satellite images considering effects of solar position," Applied Energy, Elsevier, vol. 302(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Congzhi & Yang, Mengyuan, 2023. "Memory long and short term time series network for ultra-short-term photovoltaic power forecasting," Energy, Elsevier, vol. 279(C).
    2. Hui Wang & Su Yan & Danyang Ju & Nan Ma & Jun Fang & Song Wang & Haijun Li & Tianyu Zhang & Yipeng Xie & Jun Wang, 2023. "Short-Term Photovoltaic Power Forecasting Based on a Feature Rise-Dimensional Two-Layer Ensemble Learning Model," Sustainability, MDPI, vol. 15(21), pages 1-26, November.
    3. Liu, Bai & Yang, Dazhi & Mayer, Martin János & Coimbra, Carlos F.M. & Kleissl, Jan & Kay, Merlinde & Wang, Wenting & Bright, Jamie M. & Xia, Xiang’ao & Lv, Xin & Srinivasan, Dipti & Wu, Yan & Beyer, H, 2023. "Predictability and forecast skill of solar irradiance over the contiguous United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Liu, Xiangjie & Liu, Yuanyan & Kong, Xiaobing & Ma, Lele & Besheer, Ahmad H. & Lee, Kwang Y., 2023. "Deep neural network for forecasting of photovoltaic power based on wavelet packet decomposition with similar day analysis," Energy, Elsevier, vol. 271(C).
    5. Tamás Orosz & Anton Rassõlkin & Pedro Arsénio & Peter Poór & Daniil Valme & Ádám Sleisz, 2024. "Current Challenges in Operation, Performance, and Maintenance of Photovoltaic Panels," Energies, MDPI, vol. 17(6), pages 1-22, March.
    6. Max Olinto Moreira & Betania Mafra Kaizer & Takaaki Ohishi & Benedito Donizeti Bonatto & Antonio Carlos Zambroni de Souza & Pedro Paulo Balestrassi, 2022. "Multivariate Strategy Using Artificial Neural Networks for Seasonal Photovoltaic Generation Forecasting," Energies, MDPI, vol. 16(1), pages 1-30, December.
    7. Linsenmeier, Manuel & Shrader, Jeffrey G., 2023. "Global inequalities in weather forecasts," SocArXiv 7e2jf, Center for Open Science.
    8. Jinhua Wen & Yian Hua & Chenkai Cai & Shiwu Wang & Helong Wang & Xinyan Zhou & Jian Huang & Jianqun Wang, 2023. "Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    9. Hai, Tao & Hussein Kadir, Dler & Ghanbari, Afshin, 2023. "Modeling the emission characteristics of the hydrogen-enriched natural gas engines by multi-output least-squares support vector regression: Comprehensive statistical and operating analyses," Energy, Elsevier, vol. 276(C).
    10. Zhang, Jiao & Li, Youping & Liu, Chunqiong & Wu, Bo & Shi, Kai, 2022. "A study of cross-correlations between PM2.5 and O3 based on Copula and Multifractal methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    11. Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
    12. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    13. Abdulelah Alkesaiberi & Fouzi Harrou & Ying Sun, 2022. "Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study," Energies, MDPI, vol. 15(7), pages 1-24, March.
    14. Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).
    15. Anand, Vaibhav, 2022. "The Value of Forecast Improvements: Evidence from Advisory Lead Times and Vehicle Crashes," MPRA Paper 114491, University Library of Munich, Germany.
    16. Yu, Min & Niu, Dongxiao & Wang, Keke & Du, Ruoyun & Yu, Xiaoyu & Sun, Lijie & Wang, Feiran, 2023. "Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and WOA-BiLSTM-Attention and considering weather classification," Energy, Elsevier, vol. 275(C).
    17. Chuyuan Lin & Ying Yu & Lucas Y. Wu & Jiguo Cao, 2023. "Unsupervised learning on U.S. weather forecast performance," Computational Statistics, Springer, vol. 38(3), pages 1193-1213, September.
    18. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    19. Isaac Gallardo & Daniel Amor & Álvaro Gutiérrez, 2023. "Recent Trends in Real-Time Photovoltaic Prediction Systems," Energies, MDPI, vol. 16(15), pages 1-17, July.
    20. Cai Tao & Junjie Lu & Jianxun Lang & Xiaosheng Peng & Kai Cheng & Shanxu Duan, 2021. "Short-Term Forecasting of Photovoltaic Power Generation Based on Feature Selection and Bias Compensation–LSTM Network," Energies, MDPI, vol. 14(11), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:97-:d:1306282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.