Author
Listed:
- Tian, Zhirui
- Liang, Bingjie
Abstract
Accurate photovoltaic power forecasting can alleviate the impact on grid stability. Most existing photovoltaic power prediction models rely on increasing model complexity or increasing the size of the look-back window to expand the amount of extracted information, but this often leads to catastrophic forgetting of learned information or the introduction of excessive redundant noise. In addition, some models predict by decomposing data and using non end-to-end learning, which may lead to inconsistent information and cumulative errors, limiting the improvement of prediction accuracy. To address the aforementioned challenges, we propose end-to-end PVMTF frameworks consisting of two models, PatchGRU and PatchGRU_h. This study is divided into two modules. In the data preprocessing module, we use Isolation Forest for outlier detection and replace outliers with window averages. Grey relational analysis is used for feature selection to reduce training complexity. In the photovoltaic power forecasting module, the PVMTF frameworks are used to directly achieve photovoltaic power forecasting. Firstly, based on the patch technique, the data is divided into independent short patches for separate learning, which can effectively preserve and learn historical information, avoiding catastrophic forgetting of important information that has already been learned as the look-back window grows. Specifically, for each patch, parameter sharing or independent parameter training Gated Recurrent Units (GRUs) are introduced to adapt to different computing needs, extract features within the patches, and achieve feature fusion. Next, a neural network-based gating mechanism is introduced to nonlinearly learn hidden states and fuse information. Finally, based on the above information fusion coding, accurate photovoltaic power forecasting is achieved by extracting the relationships between patches. Strict numerical verification indicates that PVMTF outperforms various state-of-the-art (SOTA) time series forecasting models in the three PV forecasting tasks (1-step, 384-step (4 days-ahead) and 672-step (7 days-ahead)), which provides an effective tool for PV power management and dispatch.
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:396:y:2025:i:c:s0306261925009936. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.