IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v375y2024ics030626192401417x.html
   My bibliography  Save this article

STELLM: Spatio-temporal enhanced pre-trained large language model for wind speed forecasting

Author

Listed:
  • Wu, Tangjie
  • Ling, Qiang

Abstract

As a renewable and clean energy source, wind energy has caught worldwide attention. To ensure the reliability and stability of wind energy production, wind speed forecasting is of great importance. Although existing forecasting models have shown promising results, they remain relatively small in scale and are incapable of learning comprehensive sequential representations from large-scale data to reason intricate spatio-temporal patterns obscured in entangled wind series. Recently, pre-trained large models have demonstrated impressive performance in natural language processing (NLP) and computer vision (CV). However, large models are rarely applied to wind speed forecasting due to the lack of large-scale wind data for training. To resolve this issue, we propose Spatio-Temporal Enhanced Pre-Trained Large Language Model, namely STELLM, innovatively leveraging the powerful reasoning ability of Large Language Models (LLMs) for accurate wind speed forecasting. Specifically, we first perform the series decomposition to separate wind series data into seasonal and trend components, capturing the distinct properties from disentangled patterns. Then, to empower LLMs with the spatio-temporal modeling capability, we introduce the spatial and temporal prompts, which fuse the geographic distribution information and short-term temporal patterns of wind turbines to enrich the input wind series. Moreover, we leverage an autoregressive fine-tuning strategy to align LLMs with wind series data and learn patch-level representations. Afterwards these representations are fed into a localized spatial module to capture the spatial dependencies between wind turbines. Extensive experiments on four public wind datasets demonstrate the performance superiority of STELLM.

Suggested Citation

  • Wu, Tangjie & Ling, Qiang, 2024. "STELLM: Spatio-temporal enhanced pre-trained large language model for wind speed forecasting," Applied Energy, Elsevier, vol. 375(C).
  • Handle: RePEc:eee:appene:v:375:y:2024:i:c:s030626192401417x
    DOI: 10.1016/j.apenergy.2024.124034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192401417X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Xiaoxin & Wang, Long & Wang, Zhongju & Huang, Chao, 2022. "Short-term wind speed forecasting based on spatial-temporal graph transformer networks," Energy, Elsevier, vol. 253(C).
    2. Draxl, Caroline & Clifton, Andrew & Hodge, Bri-Mathias & McCaa, Jim, 2015. "The Wind Integration National Dataset (WIND) Toolkit," Applied Energy, Elsevier, vol. 151(C), pages 355-366.
    3. Kavasseri, Rajesh G. & Seetharaman, Krithika, 2009. "Day-ahead wind speed forecasting using f-ARIMA models," Renewable Energy, Elsevier, vol. 34(5), pages 1388-1393.
    4. Bentsen, Lars Ødegaard & Warakagoda, Narada Dilp & Stenbro, Roy & Engelstad, Paal, 2023. "Spatio-temporal wind speed forecasting using graph networks and novel Transformer architectures," Applied Energy, Elsevier, vol. 333(C).
    5. Aasim, & Singh, S.N. & Mohapatra, Abheejeet, 2019. "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting," Renewable Energy, Elsevier, vol. 136(C), pages 758-768.
    6. Liu, Yongqi & Qin, Hui & Zhang, Zhendong & Pei, Shaoqian & Jiang, Zhiqiang & Feng, Zhongkai & Zhou, Jianzhong, 2020. "Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model," Applied Energy, Elsevier, vol. 260(C).
    7. Shukur, Osamah Basheer & Lee, Muhammad Hisyam, 2015. "Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA," Renewable Energy, Elsevier, vol. 76(C), pages 637-647.
    8. Nascimento, Erick Giovani Sperandio & de Melo, Talison A.C. & Moreira, Davidson M., 2023. "A transformer-based deep neural network with wavelet transform for forecasting wind speed and wind energy," Energy, Elsevier, vol. 278(C).
    9. Wu, Huijuan & Meng, Keqilao & Fan, Daoerji & Zhang, Zhanqiang & Liu, Qing, 2022. "Multistep short-term wind speed forecasting using transformer," Energy, Elsevier, vol. 261(PA).
    10. Wu, Binrong & Wang, Lin & Zeng, Yu-Rong, 2022. "Interpretable wind speed prediction with multivariate time series and temporal fusion transformers," Energy, Elsevier, vol. 252(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Huanze & Wu, Binrong & Fang, Haoyu & Lin, Jiacheng, 2025. "Interpretable wind speed forecasting through two-stage decomposition with comprehensive relative importance analysis," Applied Energy, Elsevier, vol. 392(C).
    2. Wang, Wenyang & Luo, Yuping & Xu, Yuqiang & Liu, Danzhu & Zhou, Jibin & Shao, Peng, 2025. "SPPformer: A transformer-based model with a sparse attention mechanism for comprehensive and interpretable ship price analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 199(C).
    3. Ai, Xueyi & Feng, Tao & Gan, Wei & Li, Shijia, 2025. "An innovative memory-enhanced Elman neural network-based selective ensemble system for short-term wind speed prediction," Applied Energy, Elsevier, vol. 380(C).
    4. Li, Yanbin & Hu, Weikun & Zhang, Feng & Li, Yun, 2025. "Multi-objective collaborative operation optimization of park-level integrated energy system clusters considering green power forecasting and trading," Energy, Elsevier, vol. 319(C).
    5. Gao, Mingyang & Zhou, Suyang & Gu, Wei & Wu, Zhi & Liu, Haiquan & Zhou, Aihua & Wang, Xinliang, 2025. "MMGPT4LF: Leveraging an optimized pre-trained GPT-2 model with multi-modal cross-attention for load forecasting," Applied Energy, Elsevier, vol. 392(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verdone, Alessio & Panella, Massimo & De Santis, Enrico & Rizzi, Antonello, 2025. "A review of solar and wind energy forecasting: From single-site to multi-site paradigm," Applied Energy, Elsevier, vol. 392(C).
    2. Wu, Binrong & Yu, Sihao & Peng, Lu & Wang, Lin, 2024. "Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition," Energy, Elsevier, vol. 294(C).
    3. Wang Xinxin & Shen Xiaopan & Ai Xueyi & Li Shijia, 2023. "Short-term wind speed forecasting based on a hybrid model of ICEEMDAN, MFE, LSTM and informer," PLOS ONE, Public Library of Science, vol. 18(9), pages 1-27, September.
    4. Bentsen, Lars Ødegaard & Warakagoda, Narada Dilp & Stenbro, Roy & Engelstad, Paal, 2023. "Spatio-temporal wind speed forecasting using graph networks and novel Transformer architectures," Applied Energy, Elsevier, vol. 333(C).
    5. Zhang, Dongqin & Hu, Gang & Song, Jie & Gao, Huanxiang & Ren, Hehe & Chen, Wenli, 2024. "A novel spatio-temporal wind speed forecasting method based on the microscale meteorological model and a hybrid deep learning model," Energy, Elsevier, vol. 288(C).
    6. Leng, Zhiyuan & Chen, Lu & Yi, Bin & Liu, Fanqian & Xie, Tao & Mei, Ziyi, 2025. "Short-term wind speed forecasting based on a novel KANInformer model and improved dual decomposition," Energy, Elsevier, vol. 322(C).
    7. Ma, Long & Huang, Ling & Shi, Huifeng, 2023. "Multi-node wind speed forecasting based on a novel dynamic spatial–temporal graph network," Energy, Elsevier, vol. 285(C).
    8. Lars Ødegaard Bentsen & Narada Dilp Warakagoda & Roy Stenbro & Paal Engelstad, 2023. "A Unified Graph Formulation for Spatio-Temporal Wind Forecasting," Energies, MDPI, vol. 16(20), pages 1-23, October.
    9. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    10. Jiang, Wenjun & Liu, Bo & Liang, Yang & Gao, Huanxiang & Lin, Pengfei & Zhang, Dongqin & Hu, Gang, 2024. "Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables," Applied Energy, Elsevier, vol. 353(PB).
    11. Lin, Shengmao & Wang, Shu & Xu, Xuefang & Li, Ruixiong & Shi, Peiming, 2024. "GAOformer: An adaptive spatiotemporal feature fusion transformer utilizing GAT and optimizable graph matrixes for offshore wind speed prediction," Energy, Elsevier, vol. 292(C).
    12. Wu, Tangjie & Ling, Qiang, 2024. "Self-supervised dynamic stochastic graph network for spatio-temporal wind speed forecasting," Energy, Elsevier, vol. 304(C).
    13. Fang, Ping & Fu, Wenlong & Wang, Kai & Xiong, Dongzhen & Zhang, Kai, 2022. "A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 307(C).
    14. Liu, Xingdou & Zhang, Li & Wang, Jiangong & Zhou, Yue & Gan, Wei, 2023. "A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data," Renewable Energy, Elsevier, vol. 211(C), pages 948-963.
    15. Heng, Jiani & Hong, Yongmiao & Hu, Jianming & Wang, Shouyang, 2022. "Probabilistic and deterministic wind speed forecasting based on non-parametric approaches and wind characteristics information," Applied Energy, Elsevier, vol. 306(PA).
    16. Wang, Xuguang & Li, Xiao & Su, Jie, 2023. "Distribution drift-adaptive short-term wind speed forecasting," Energy, Elsevier, vol. 273(C).
    17. Houndekindo, Freddy & Ouarda, Taha B.M.J., 2025. "LSTM and Transformer-based framework for bias correction of ERA5 hourly wind speeds," Energy, Elsevier, vol. 328(C).
    18. Wang, Yun & Xu, Houhua & Song, Mengmeng & Zhang, Fan & Li, Yifen & Zhou, Shengchao & Zhang, Lingjun, 2023. "A convolutional Transformer-based truncated Gaussian density network with data denoising for wind speed forecasting," Applied Energy, Elsevier, vol. 333(C).
    19. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    20. Chen, Xin & Ye, Xiaoling & Shi, Jian & Zhang, Yingchao & Xiong, Xiong, 2024. "A spatial transfer-based hybrid model for wind speed forecasting," Energy, Elsevier, vol. 313(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:375:y:2024:i:c:s030626192401417x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.