IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v380y2025ics0306261924024929.html
   My bibliography  Save this article

An innovative memory-enhanced Elman neural network-based selective ensemble system for short-term wind speed prediction

Author

Listed:
  • Ai, Xueyi
  • Feng, Tao
  • Gan, Wei
  • Li, Shijia

Abstract

The inherent volatility and uncertainty of wind speed can exert high pressure on power grid operations, making an accurate wind speed prediction model essential. Most existing decomposition-ensemble forecasting studies still have certain limitations, where traditional ensemble strategies struggle to effectively coordinate the information differences among subsequences generated by multiple predictive models. Additionally, most ensemble model selection strategies focus solely on fitting ability, neglecting the diversity of predictive models. Therefore, this paper proposes an innovative memory-enhanced Elman neural network-based selective ensemble system for short-term wind speed prediction. Firstly, this paper introduces for the first time the use of a memory-enhanced Elman neural network as an ensemble strategy. This approach effectively memorizes prediction information for each subsequence and discerns informational differences among them, efficiently coordinating and integrating the sub-prediction results. Secondly, a two-stage predictive model selection optimization mechanism is then established and incorporated into the forecasting system, dynamically selecting the optimal sub-prediction model. Finally, this system proposes a self-optimizing preprocessing technique that adaptively selects the appropriate key parameters for denoising and signal decomposition across different datasets. The experimental results from three wind speed datasets collected from different geographical locations and time domains demonstrate that the proposed forecasting system has high predictive accuracy and good stability. Compared with other advanced models, the performance of the proposed forecasting model can be improved by up to 70 %.

Suggested Citation

  • Ai, Xueyi & Feng, Tao & Gan, Wei & Li, Shijia, 2025. "An innovative memory-enhanced Elman neural network-based selective ensemble system for short-term wind speed prediction," Applied Energy, Elsevier, vol. 380(C).
  • Handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024929
    DOI: 10.1016/j.apenergy.2024.125108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924024929
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yonggang & Zhao, Kaixing & Hao, Yue & Yao, Yilin, 2024. "Short-term wind power prediction using a novel model based on butterfly optimization algorithm-variational mode decomposition-long short-term memory," Applied Energy, Elsevier, vol. 366(C).
    2. Wu, Tangjie & Ling, Qiang, 2024. "STELLM: Spatio-temporal enhanced pre-trained large language model for wind speed forecasting," Applied Energy, Elsevier, vol. 375(C).
    3. Liu, Xingdou & Zhang, Li & Wang, Jiangong & Zhou, Yue & Gan, Wei, 2023. "A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data," Renewable Energy, Elsevier, vol. 211(C), pages 948-963.
    4. Jiang, Wenjun & Lin, Pengfei & Liang, Yang & Gao, Huanxiang & Zhang, Dongqin & Hu, Gang, 2023. "A novel hybrid deep learning model for multi-step wind speed forecasting considering pairwise dependencies among multiple atmospheric variables," Energy, Elsevier, vol. 285(C).
    5. He, Xinbo & Wang, Yong & Zhang, Yuyang & Ma, Xin & Wu, Wenqing & Zhang, Lei, 2022. "A novel structure adaptive new information priority discrete grey prediction model and its application in renewable energy generation forecasting," Applied Energy, Elsevier, vol. 325(C).
    6. Gong, Zhipeng & Wan, Anping & Ji, Yunsong & AL-Bukhaiti, Khalil & Yao, Zhehe, 2024. "Improving short-term offshore wind speed forecast accuracy using a VMD-PE-FCGRU hybrid model," Energy, Elsevier, vol. 295(C).
    7. Ding, Lin & Bai, Yulong & Liu, Ming-De & Fan, Man-Hong & Yang, Jie, 2022. "Predicting short wind speed with a hybrid model based on a piecewise error correction method and Elman neural network," Energy, Elsevier, vol. 244(PA).
    8. Zhang, Ziyuan & Wang, Jianzhou & Wei, Danxiang & Luo, Tianrui & Xia, Yurui, 2023. "A novel ensemble system for short-term wind speed forecasting based on Two-stage Attention-Based Recurrent Neural Network," Renewable Energy, Elsevier, vol. 204(C), pages 11-23.
    9. Du, Pei & Yang, Dongchuan & Li, Yanzhao & Wang, Jianzhou, 2024. "An innovative interpretable combined learning model for wind speed forecasting," Applied Energy, Elsevier, vol. 358(C).
    10. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    11. Zhao, Ning & Su, Yi & Dai, Xianxing & Jia, Shaomin & Wang, Xuewei, 2024. "A new decomposition-ensemble strategy fusion with correntropy optimization learning algorithms for short-term wind speed prediction," Applied Energy, Elsevier, vol. 369(C).
    12. Zhang, Lifang & Wang, Jianzhou & Niu, Xinsong & Liu, Zhenkun, 2021. "Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection," Applied Energy, Elsevier, vol. 301(C).
    13. Lu, Kai-Hung & Hong, Chih-Ming & Xu, Qiangqiang, 2019. "Recurrent wavelet-based Elman neural network with modified gravitational search algorithm control for integrated offshore wind and wave power generation systems," Energy, Elsevier, vol. 170(C), pages 40-52.
    14. Gao, Yuyang & Wang, Jianzhou & Yang, Hufang, 2022. "A multi-component hybrid system based on predictability recognition and modified multi-objective optimization for ultra-short-term onshore wind speed forecasting," Renewable Energy, Elsevier, vol. 188(C), pages 384-401.
    15. Fu, Wenlong & Fu, Yuchen & Li, Bailing & Zhang, Hairong & Zhang, Xuanrui & Liu, Jiarui, 2023. "A compound framework incorporating improved outlier detection and correction, VMD, weight-based stacked generalization with enhanced DESMA for multi-step short-term wind speed forecasting," Applied Energy, Elsevier, vol. 348(C).
    16. Liu, Chenyu & Zhang, Xuemin & Mei, Shengwei & Zhou, Qingyu & Fan, Hang, 2023. "Series-wise attention network for wind power forecasting considering temporal lag of numerical weather prediction," Applied Energy, Elsevier, vol. 336(C).
    17. Wang, Chen & Zhang, Shenghui & Liao, Peng & Fu, Tonglin, 2022. "Wind speed forecasting based on hybrid model with model selection and wind energy conversion," Renewable Energy, Elsevier, vol. 196(C), pages 763-781.
    18. Li, Yiman & Peng, Tian & Zhang, Chu & Sun, Wei & Hua, Lei & Ji, Chunlei & Muhammad Shahzad, Nazir, 2022. "Multi-step ahead wind speed forecasting approach coupling maximal overlap discrete wavelet transform, improved grey wolf optimization algorithm and long short-term memory," Renewable Energy, Elsevier, vol. 196(C), pages 1115-1126.
    19. Yang, Mao & Guo, Yunfeng & Huang, Yutong, 2023. "Wind power ultra-short-term prediction method based on NWP wind speed correction and double clustering division of transitional weather process," Energy, Elsevier, vol. 282(C).
    20. Liu, Hui & Tian, Hong-qi & Liang, Xi-feng & Li, Yan-fei, 2015. "Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks," Applied Energy, Elsevier, vol. 157(C), pages 183-194.
    21. Li, Jingrui & Wang, Jianzhou & Zhang, Haipeng & Li, Zhiwu, 2022. "An innovative combined model based on multi-objective optimization approach for forecasting short-term wind speed: A case study in China," Renewable Energy, Elsevier, vol. 201(P1), pages 766-779.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Haipeng & Wang, Jianzhou & Qian, Yuansheng & Li, Qiwei, 2024. "Point and interval wind speed forecasting of multivariate time series based on dual-layer LSTM," Energy, Elsevier, vol. 294(C).
    2. Yang, Dongchuan & Li, Mingzhu & Guo, Ju-e & Du, Pei, 2024. "An attention-based multi-input LSTM with sliding window-based two-stage decomposition for wind speed forecasting," Applied Energy, Elsevier, vol. 375(C).
    3. Zhang, Yagang & Pan, Zhiya & Wang, Hui & Wang, Jingchao & Zhao, Zheng & Wang, Fei, 2023. "Achieving wind power and photovoltaic power prediction: An intelligent prediction system based on a deep learning approach," Energy, Elsevier, vol. 283(C).
    4. Wang, Yaqi & Zhao, Xiaomeng & Li, Zheng & Zhu, Wenbo & Gui, Renzhou, 2024. "A novel hybrid model for multi-step-ahead forecasting of wind speed based on univariate data feature enhancement," Energy, Elsevier, vol. 312(C).
    5. Yang, Mao & Guo, Yunfeng & Fan, Fulin & Huang, Tao, 2024. "Two-stage correction prediction of wind power based on numerical weather prediction wind speed superposition correction and improved clustering," Energy, Elsevier, vol. 302(C).
    6. Yang, Wendong & Zang, Xinyi & Wu, Chunying & Hao, Yan, 2024. "A new multi-objective ensemble wind speed forecasting system: Mixed-frequency interval-valued modeling paradigm," Energy, Elsevier, vol. 304(C).
    7. Zhang, Guowei & Zhang, Yi & Wang, Hui & Liu, Da & Cheng, Runkun & Yang, Di, 2024. "Short-term wind speed forecasting based on adaptive secondary decomposition and robust temporal convolutional network," Energy, Elsevier, vol. 288(C).
    8. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    9. Wang, Jianzhou & Niu, Xinsong & Zhang, Lifang & Liu, Zhenkun & Wei, Danxiang, 2022. "The influence of international oil prices on the exchange rates of oil exporting countries: Based on the hybrid copula function," Resources Policy, Elsevier, vol. 77(C).
    10. Bashir, Hassan & Sibtain, Muhammad & Hanay, Özge & Azam, Muhammad Imran & Qurat-ul-Ain, & Saleem, Snoober, 2023. "Decomposition and Harris hawks optimized multivariate wind speed forecasting utilizing sequence2sequence-based spatiotemporal attention," Energy, Elsevier, vol. 278(PB).
    11. Tian, Zhirui & Wang, Jiyang, 2023. "A wind speed prediction system based on new data preprocessing strategy and improved multi-objective optimizer," Renewable Energy, Elsevier, vol. 215(C).
    12. Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
    13. Wu, Jie & Li, Na & Zhao, Yan & Wang, Jujie, 2022. "Usage of correlation analysis and hypothesis test in optimizing the gated recurrent unit network for wind speed forecasting," Energy, Elsevier, vol. 242(C).
    14. Du, Pei & Yang, Dongchuan & Li, Yanzhao & Wang, Jianzhou, 2024. "An innovative interpretable combined learning model for wind speed forecasting," Applied Energy, Elsevier, vol. 358(C).
    15. Huang, Hao-Hsuan & Huang, Yun-Hsun, 2024. "Applying green learning to regional wind power prediction and fluctuation risk assessment," Energy, Elsevier, vol. 295(C).
    16. Zheng, Jingwei & Wang, Jianzhou, 2024. "Short-term wind speed forecasting based on recurrent neural networks and Levy crystal structure algorithm," Energy, Elsevier, vol. 293(C).
    17. Yingying He & Likai Zhang & Tengda Guan & Zheyu Zhang, 2024. "An Integrated CEEMDAN to Optimize Deep Long Short-Term Memory Model for Wind Speed Forecasting," Energies, MDPI, vol. 17(18), pages 1-29, September.
    18. Zhang, Yagang & Kong, Xue & Wang, Jingchao & Wang, Hui & Cheng, Xiaodan, 2024. "Wind power forecasting system with data enhancement and algorithm improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    19. Yukun Wang & Aiying Zhao & Xiaoxue Wei & Ranran Li, 2023. "A Novel Ensemble Model Based on an Advanced Optimization Algorithm for Wind Speed Forecasting," Energies, MDPI, vol. 16(14), pages 1-19, July.
    20. Li, Jingrui & Wang, Jiyang & Li, Zhiwu, 2023. "A novel combined forecasting system based on advanced optimization algorithm - A study on optimal interval prediction of wind speed," Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.