IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224008296.html
   My bibliography  Save this article

Applying green learning to regional wind power prediction and fluctuation risk assessment

Author

Listed:
  • Huang, Hao-Hsuan
  • Huang, Yun-Hsun

Abstract

Deep Learning (DL) models, such as Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), have been widely used to predict the intermittency of wind power; however, the non-linear activation functions and backpropagation mechanisms in DL models increase computational complexity and energy consumption. This paper proposes a prediction model based on Green Learning (GL) to reduce energy consumption. The proposed GL model replaces the feature extraction of activation functions with a hybrid feature extraction approach combining categorical and numerical features. We also employ cluster centroids and quantile regression forest for classification/regression to eliminate the need for backpropagation in optimizing hyperparameters. Using Taiwan as a case study, this paper evaluates the risk of fluctuations in regional wind power generation in 2030. In simulations, the proposed GL model achieved excellent accuracy with energy consumption significantly lower than that of DL models. Our analysis also revealed that by 2030, fluctuations in wind power generation during the winter will exceed 40% of the peak supply capacity in the central region, indicating the need to enhance the resilience of regional power systems.

Suggested Citation

  • Huang, Hao-Hsuan & Huang, Yun-Hsun, 2024. "Applying green learning to regional wind power prediction and fluctuation risk assessment," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008296
    DOI: 10.1016/j.energy.2024.131057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224008296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.