IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v240y2025ics0960148124023036.html
   My bibliography  Save this article

A novel minute-scale prediction method of incoming wind conditions with limited LiDAR data

Author

Listed:
  • Wang, Han
  • Li, Yunzhou
  • Yan, Jie
  • Xiao, Wuyang
  • Han, Shuang
  • Liu, Yongqian

Abstract

Accurate incoming wind conditions in future are essential inputs for wind farm wake optimization control. Nacelle SCADA data is commonly used for wind prediction at present. However, the influence of wind-blocking and nacelle vibration introduces significant disparities between SCADA data and incoming wind conditions, leading to a serious reduction in prediction accuracy. Furthermore, the existing prediction technologies often offer limited resolution, typically exceeding 15 min, making it challenging to meet the timeliness requirements of wake optimization control. Wind LiDAR can provide accurate incoming wind conditions, but due to its expensive cost, wind farms usually install it at specific wind turbines by leasing, which poses significant challenges in acquiring long-term incoming wind conditions at multiple wind turbines. Therefore, a novel minute-scale prediction method of incoming wind conditions with limited LiDAR data for wind farm wake optimization control is proposed in this paper. For wind turbines equipped with leased LiDAR, a temporal soft-sensing model based on Sequence to Sequence is established by considering the autocorrelation in wind speed and wind direction time series. For wind turbines without LiDAR equipment, a spatial soft-sensing model based on Domain Adversarial Neural Network is established, the unsupervised transfer from wind turbines with LiDAR to those without is realized for the first time. On the above basis, aiming at the characteristics of faster frequency fluctuation and larger amplitude of minute-level wind conditions, a joint wind speed and wind direction prediction model based on multi-task learning is established to achieve the accurate prediction of future incoming wind conditions. Four wind turbines are taken as examples to validate the effectiveness and robustness of the proposed method. The results show that the proposed method has better performance than traditional methods. When RMSE is used as the evaluation index, the deviation of LiDAR temporal soft-sensing can be reduced by 3.8%–59.7% (wind speed) and 17.2%–61.0% (wind direction), spatial soft-sensing can be reduced by 2.2%–50.0% (wind speed) and 10.8%–53.0% (wind direction). The prediction accuracy of incoming wind conditions can be improved by 1.7%–7.4% (wind speed) and 2.4%–7.6% (wind direction), and the wind farm power generation can be improved by 0.15%–4.09%.

Suggested Citation

  • Wang, Han & Li, Yunzhou & Yan, Jie & Xiao, Wuyang & Han, Shuang & Liu, Yongqian, 2025. "A novel minute-scale prediction method of incoming wind conditions with limited LiDAR data," Renewable Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124023036
    DOI: 10.1016/j.renene.2024.122235
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124023036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Jeonghwan & Kim, Taewan & You, Donghyun, 2023. "Particle swarm optimization of a wind farm layout with active control of turbine yaws," Renewable Energy, Elsevier, vol. 206(C), pages 738-747.
    2. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    3. Wang, Jian & Yang, Zhongshan, 2021. "Ultra-short-term wind speed forecasting using an optimized artificial intelligence algorithm," Renewable Energy, Elsevier, vol. 171(C), pages 1418-1435.
    4. Bentsen, Lars Ødegaard & Warakagoda, Narada Dilp & Stenbro, Roy & Engelstad, Paal, 2023. "Spatio-temporal wind speed forecasting using graph networks and novel Transformer architectures," Applied Energy, Elsevier, vol. 333(C).
    5. Tang, Shengming & Li, Tiantian & Guo, Yun & Zhu, Rong & Qu, Hongya, 2022. "Correction of various environmental influences on Doppler wind lidar based on multiple linear regression model," Renewable Energy, Elsevier, vol. 184(C), pages 933-947.
    6. Anagnostopoulos, Sokratis J. & Bauer, Jens & Clare, Mariana C.A. & Piggott, Matthew D., 2023. "Accelerated wind farm yaw and layout optimisation with multi-fidelity deep transfer learning wake models," Renewable Energy, Elsevier, vol. 218(C).
    7. Qu, Zongxi & Mao, Wenqian & Zhang, Kequan & Zhang, Wenyu & Li, Zhipeng, 2019. "Multi-step wind speed forecasting based on a hybrid decomposition technique and an improved back-propagation neural network," Renewable Energy, Elsevier, vol. 133(C), pages 919-929.
    8. Zhang, Lifang & Wang, Jianzhou & Niu, Xinsong & Liu, Zhenkun, 2021. "Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection," Applied Energy, Elsevier, vol. 301(C).
    9. Gao, Yuyang & Wang, Jianzhou & Yang, Hufang, 2022. "A multi-component hybrid system based on predictability recognition and modified multi-objective optimization for ultra-short-term onshore wind speed forecasting," Renewable Energy, Elsevier, vol. 188(C), pages 384-401.
    10. Yang, Qiuling & Deng, Changhong & Chang, Xiqiang, 2022. "Ultra-short-term / short-term wind speed prediction based on improved singular spectrum analysis," Renewable Energy, Elsevier, vol. 184(C), pages 36-44.
    11. Zhang, Wenyu & Zhang, Lifang & Wang, Jianzhou & Niu, Xinsong, 2020. "Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting," Applied Energy, Elsevier, vol. 277(C).
    12. Aasim, & Singh, S.N. & Mohapatra, Abheejeet, 2019. "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting," Renewable Energy, Elsevier, vol. 136(C), pages 758-768.
    13. Amin Niayifar & Fernando Porté-Agel, 2016. "Analytical Modeling of Wind Farms: A New Approach for Power Prediction," Energies, MDPI, vol. 9(9), pages 1-13, September.
    14. Tawn, R. & Browell, J., 2022. "A review of very short-term wind and solar power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    15. Suo, Leiming & Peng, Tian & Song, Shihao & Zhang, Chu & Wang, Yuhan & Fu, Yongyan & Nazir, Muhammad Shahzad, 2023. "Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm," Energy, Elsevier, vol. 276(C).
    16. Yan, Bowen & Shen, Ruifang & Li, Ke & Wang, Zhenguo & Yang, Qingshan & Zhou, Xuhong & Zhang, Le, 2023. "Spatio-temporal correlation for simultaneous ultra-short-term wind speed prediction at multiple locations," Energy, Elsevier, vol. 284(C).
    17. Tang, Shengming & Guo, Yun & Wang, Xu & Zhu, Rong & Tang, Jie & Zhang, Shuai, 2023. "Evaluation and impact factors of Doppler wind lidar during Super Typhoon Lekima (2019)," Renewable Energy, Elsevier, vol. 205(C), pages 305-316.
    18. Yang, Mao & Guo, Yunfeng & Huang, Yutong, 2023. "Wind power ultra-short-term prediction method based on NWP wind speed correction and double clustering division of transitional weather process," Energy, Elsevier, vol. 282(C).
    19. Dai, Juchuan & Liu, Deshun & Wen, Li & Long, Xin, 2016. "Research on power coefficient of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 86(C), pages 206-215.
    20. Zhang, Shaohai & Gao, Xiaoxia & Ma, Wanli & Lu, Hongkun & Lv, Tao & Xu, Shinai & Zhu, Xiaoxun & Sun, Haiying & Wang, Yu, 2023. "Derivation and verification of three-dimensional wake model of multiple wind turbines based on super-Gaussian function," Renewable Energy, Elsevier, vol. 215(C).
    21. Zhang, Yagang & Zhao, Yunpeng & Shen, Xiaoyu & Zhang, Jinghui, 2022. "A comprehensive wind speed prediction system based on Monte Carlo and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 305(C).
    22. Wang, Lei & He, Yigang, 2022. "M2STAN: Multi-modal multi-task spatiotemporal attention network for multi-location ultra-short-term wind power multi-step predictions," Applied Energy, Elsevier, vol. 324(C).
    23. Han, Yan & Mi, Lihua & Shen, Lian & Cai, C.S. & Liu, Yuchen & Li, Kai & Xu, Guoji, 2022. "A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting," Applied Energy, Elsevier, vol. 312(C).
    24. Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xingdou & Zhang, Li & Wang, Jiangong & Zhou, Yue & Gan, Wei, 2023. "A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data," Renewable Energy, Elsevier, vol. 211(C), pages 948-963.
    2. Shang, Zhihao & He, Zhaoshuang & Chen, Yao & Chen, Yanhua & Xu, MingLiang, 2022. "Short-term wind speed forecasting system based on multivariate time series and multi-objective optimization," Energy, Elsevier, vol. 238(PC).
    3. Zhang, Yagang & Zhang, Jinghui & Yu, Leyi & Pan, Zhiya & Feng, Changyou & Sun, Yiqian & Wang, Fei, 2022. "A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique," Energy, Elsevier, vol. 254(PC).
    4. Elshafei, Basem & Popov, Atanas & Giddings, Donald, 2024. "Enhanced offshore wind resource assessment using hybrid data fusion and numerical models," Energy, Elsevier, vol. 310(C).
    5. Gao, Huanxiang & Hu, Gang & Zhang, Dongqin & Jiang, Wenjun & Ren, Hehe & Chen, Wenli, 2024. "Prediction of wind fields in mountains at multiple elevations using deep learning models," Applied Energy, Elsevier, vol. 353(PA).
    6. Zhang, Dongqin & Hu, Gang & Song, Jie & Gao, Huanxiang & Ren, Hehe & Chen, Wenli, 2024. "A novel spatio-temporal wind speed forecasting method based on the microscale meteorological model and a hybrid deep learning model," Energy, Elsevier, vol. 288(C).
    7. Zhang, Guowei & Zhang, Yi & Wang, Hui & Liu, Da & Cheng, Runkun & Yang, Di, 2024. "Short-term wind speed forecasting based on adaptive secondary decomposition and robust temporal convolutional network," Energy, Elsevier, vol. 288(C).
    8. Zhang, Haipeng & Wang, Jianzhou & Qian, Yuansheng & Li, Qiwei, 2024. "Point and interval wind speed forecasting of multivariate time series based on dual-layer LSTM," Energy, Elsevier, vol. 294(C).
    9. Wang, Jianzhou & Wang, Shuai & Li, Zhiwu, 2021. "Wind speed deterministic forecasting and probabilistic interval forecasting approach based on deep learning, modified tunicate swarm algorithm, and quantile regression," Renewable Energy, Elsevier, vol. 179(C), pages 1246-1261.
    10. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    11. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    12. Xu, Xuefang & Hu, Shiting & Shao, Huaishuang & Shi, Peiming & Li, Ruixiong & Li, Deguang, 2023. "A spatio-temporal forecasting model using optimally weighted graph convolutional network and gated recurrent unit for wind speed of different sites distributed in an offshore wind farm," Energy, Elsevier, vol. 284(C).
    13. Zongwei Zhang & Lianlei Lin & Sheng Gao & Junkai Wang & Hanqing Zhao & Hangyi Yu, 2025. "A machine learning model for hub-height short-term wind speed prediction," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    14. Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
    15. Yang, Mao & Guo, Yunfeng & Fan, Fulin & Huang, Tao, 2024. "Two-stage correction prediction of wind power based on numerical weather prediction wind speed superposition correction and improved clustering," Energy, Elsevier, vol. 302(C).
    16. Yang, Mao & Huang, Yutong & Xu, Chuanyu & Liu, Chenyu & Dai, Bozhi, 2025. "Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations," Applied Energy, Elsevier, vol. 377(PC).
    17. Fu, Wenlong & Fu, Yuchen & Li, Bailing & Zhang, Hairong & Zhang, Xuanrui & Liu, Jiarui, 2023. "A compound framework incorporating improved outlier detection and correction, VMD, weight-based stacked generalization with enhanced DESMA for multi-step short-term wind speed forecasting," Applied Energy, Elsevier, vol. 348(C).
    18. Yukun Wang & Aiying Zhao & Xiaoxue Wei & Ranran Li, 2023. "A Novel Ensemble Model Based on an Advanced Optimization Algorithm for Wind Speed Forecasting," Energies, MDPI, vol. 16(14), pages 1-19, July.
    19. Zhu, Anfeng & Zhao, Qiancheng & Shi, Zhaoyao & Yang, Tianlong & Zhou, Ling & Zeng, Bing, 2024. "A novel combined model based on advanced optimization algorithm, and deep learning model for abnormal wind speed identification and reconstruction," Energy, Elsevier, vol. 312(C).
    20. Ai, Xueyi & Feng, Tao & Gan, Wei & Li, Shijia, 2025. "An innovative memory-enhanced Elman neural network-based selective ensemble system for short-term wind speed prediction," Applied Energy, Elsevier, vol. 380(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124023036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.