IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v86y2016icp206-215.html
   My bibliography  Save this article

Research on power coefficient of wind turbines based on SCADA data

Author

Listed:
  • Dai, Juchuan
  • Liu, Deshun
  • Wen, Li
  • Long, Xin

Abstract

Power coefficient Cp is an important parameter for wind turbine design and operational control. Wind speed is the basic calculation parameter of the power coefficient. Since the anemometer is fixed on the nacelle, the measured wind speed is different from the wind speed in front of the wind rotor. Calculation error will produced if the directly measured wind speed is used to calculate the power coefficient. In this paper, a calculation model of the wind speed in front of the wind rotor is presented based on the SCADA data and the aerodynamic theory. Two power coefficient calculation methods are proposed. One is based on the statistical data and the other is based on the real-time data. An actual calculation result for a 2 MW wind turbine shows that the power coefficient is near or greater than 0.593 (the theoretical maximum value) if the directly measured wind speed is used during the maximum power point tracking (MPPT). After wind speed correction, the power coefficient is reduced to 0.397 that is more realistic. When using the real time data, the power coefficient is time-varying even in the region of MPPT, since wind speed is time-varying and the wind rotor rotational speed regulation is delayed due to the wind rotor moment of inertia.

Suggested Citation

  • Dai, Juchuan & Liu, Deshun & Wen, Li & Long, Xin, 2016. "Research on power coefficient of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 86(C), pages 206-215.
  • Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:206-215
    DOI: 10.1016/j.renene.2015.08.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115302238
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.08.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roy, Sanjoy, 2014. "Performance prediction of active pitch-regulated wind turbine with short duration variations in source wind," Applied Energy, Elsevier, vol. 114(C), pages 700-708.
    2. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    3. AL-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel & Al-Alawi, Saleh, 2010. "Assessment of wind energy potential locations in Oman using data from existing weather stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1428-1436, June.
    4. Boukhezzar, B. & Lupu, L. & Siguerdidjane, H. & Hand, M., 2007. "Multivariable control strategy for variable speed, variable pitch wind turbines," Renewable Energy, Elsevier, vol. 32(8), pages 1273-1287.
    5. Lanzafame, R. & Messina, M., 2010. "Horizontal axis wind turbine working at maximum power coefficient continuously," Renewable Energy, Elsevier, vol. 35(1), pages 301-306.
    6. Belmokhtar, K. & Doumbia, M.L. & Agbossou, K., 2014. "Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly-fed induction generator)," Energy, Elsevier, vol. 76(C), pages 679-693.
    7. Dai, J.C. & Hu, Y.P. & Liu, D.S. & Long, X., 2011. "Aerodynamic loads calculation and analysis for large scale wind turbine based on combining BEM modified theory with dynamic stall model," Renewable Energy, Elsevier, vol. 36(3), pages 1095-1104.
    8. Lin, Whei-Min & Hong, Chih-Ming, 2010. "Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system," Energy, Elsevier, vol. 35(6), pages 2440-2447.
    9. Petković, Dalibor & Ćojbašić, Žarko & Nikolić, Vlastimir & Shamshirband, Shahaboddin & Mat Kiah, Miss Laiha & Anuar, Nor Badrul & Abdul Wahab, Ainuddin Wahid, 2014. "Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission," Energy, Elsevier, vol. 64(C), pages 868-874.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Juchuan & Tan, Yayi & Shen, Xiangbin, 2019. "Investigation of energy output in mountain wind farm using multiple-units SCADA data," Applied Energy, Elsevier, vol. 239(C), pages 225-238.
    2. Huifan Zeng & Juchuan Dai & Chengming Zuo & Huanguo Chen & Mimi Li & Fan Zhang, 2022. "Correlation Investigation of Wind Turbine Multiple Operating Parameters Based on SCADA Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
    3. Chen, Jian & Yao, Wei & Zhang, Chuan-Ke & Ren, Yaxing & Jiang, Lin, 2019. "Design of robust MPPT controller for grid-connected PMSG-Based wind turbine via perturbation observation based nonlinear adaptive control," Renewable Energy, Elsevier, vol. 134(C), pages 478-495.
    4. Strušnik, Dušan & Marčič, Milan & Golob, Marjan & Hribernik, Aleš & Živić, Marija & Avsec, Jurij, 2016. "Energy efficiency analysis of steam ejector and electric vacuum pump for a turbine condenser air extraction system based on supervised machine learning modelling," Applied Energy, Elsevier, vol. 173(C), pages 386-405.
    5. Shin, Dongheon & Ko, Kyungnam, 2017. "Comparative analysis of degradation rates for inland and seaside wind turbines in compliance with the International Electrotechnical Commission standard," Energy, Elsevier, vol. 118(C), pages 1180-1186.
    6. Camilo I. Martínez-Márquez & Jackson D. Twizere-Bakunda & David Lundback-Mompó & Salvador Orts-Grau & Francisco J. Gimeno-Sales & Salvador Seguí-Chilet, 2019. "Small Wind Turbine Emulator Based on Lambda-Cp Curves Obtained under Real Operating Conditions," Energies, MDPI, vol. 12(13), pages 1-17, June.
    7. Dai, Juchuan & Yang, Xin & Hu, Wei & Wen, Li & Tan, Yayi, 2018. "Effect investigation of yaw on wind turbine performance based on SCADA data," Energy, Elsevier, vol. 149(C), pages 684-696.
    8. Fathabadi, Hassan, 2017. "Novel standalone hybrid solar/wind/fuel cell/battery power generation system," Energy, Elsevier, vol. 140(P1), pages 454-465.
    9. Fathabadi, Hassan, 2017. "Novel grid-connected solar/wind powered electric vehicle charging station with vehicle-to-grid technology," Energy, Elsevier, vol. 132(C), pages 1-11.
    10. Jiale Li & Xiong (Bill) Yu, 2017. "Analyses of the Extensible Blade in Improving Wind Energy Production at Sites with Low-Class Wind Resource," Energies, MDPI, vol. 10(9), pages 1-24, August.
    11. Fathabadi, Hassan, 2016. "Novel highly accurate universal maximum power point tracker for maximum power extraction from hybrid fuel cell/photovoltaic/wind power generation systems," Energy, Elsevier, vol. 116(P1), pages 402-416.
    12. Fan Zhang & Juchuan Dai & Deshun Liu & Linxing Li & Xin Long, 2019. "Investigation of the Pitch Load of Large-Scale Wind Turbines Using Field SCADA Data," Energies, MDPI, vol. 12(3), pages 1-20, February.
    13. Toja-Silva, Francisco & Lopez-Garcia, Oscar & Peralta, Carlos & Navarro, Jorge & Cruz, Ignacio, 2016. "An empirical–heuristic optimization of the building-roof geometry for urban wind energy exploitation on high-rise buildings," Applied Energy, Elsevier, vol. 164(C), pages 769-794.
    14. Chengming Zuo & Juchuan Dai & Guo Li & Mimi Li & Fan Zhang, 2023. "Investigation of Data Pre-Processing Algorithms for Power Curve Modeling of Wind Turbines Based on ECC," Energies, MDPI, vol. 16(6), pages 1-24, March.
    15. Saint-Drenan, Yves-Marie & Besseau, Romain & Jansen, Malte & Staffell, Iain & Troccoli, Alberto & Dubus, Laurent & Schmidt, Johannes & Gruber, Katharina & Simões, Sofia G. & Heier, Siegfried, 2020. "A parametric model for wind turbine power curves incorporating environmental conditions," Renewable Energy, Elsevier, vol. 157(C), pages 754-768.
    16. Fathabadi, Hassan, 2016. "Maximum mechanical power extraction from wind turbines using novel proposed high accuracy single-sensor-based maximum power point tracking technique," Energy, Elsevier, vol. 113(C), pages 1219-1230.
    17. Dai, Juchuan & Li, Mimi & Chen, Huanguo & He, Tao & Zhang, Fan, 2022. "Progress and challenges on blade load research of large-scale wind turbines," Renewable Energy, Elsevier, vol. 196(C), pages 482-496.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ganjefar, Soheil & Mohammadi, Ali, 2016. "Variable speed wind turbines with maximum power extraction using singular perturbation theory," Energy, Elsevier, vol. 106(C), pages 510-519.
    2. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    3. Belkacem Belabbas & Tayeb Allaoui & Mohamed Tadjine & Mouloud Denai, 2019. "Comparative study of back-stepping controller and super twisting sliding mode controller for indirect power control of wind generator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1555-1566, December.
    4. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    5. Derafshian, Mehdi & Amjady, Nima, 2015. "Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines," Energy, Elsevier, vol. 84(C), pages 1-14.
    6. Karabacak, Murat, 2019. "A new perturb and observe based higher order sliding mode MPPT control of wind turbines eliminating the rotor inertial effect," Renewable Energy, Elsevier, vol. 133(C), pages 807-827.
    7. Dai, Juchuan & Yang, Xin & Hu, Wei & Wen, Li & Tan, Yayi, 2018. "Effect investigation of yaw on wind turbine performance based on SCADA data," Energy, Elsevier, vol. 149(C), pages 684-696.
    8. Tiwari, Ramji & Babu, N. Ramesh, 2016. "Recent developments of control strategies for wind energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 268-285.
    9. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
    10. Shrabani Sahu & Sasmita Behera, 2022. "A review on modern control applications in wind energy conversion system," Energy & Environment, , vol. 33(2), pages 223-262, March.
    11. Bahrami, Arian & Teimourian, Amir & Okoye, Chiemeka Onyeka & Khosravi, Nima, 2019. "Assessing the feasibility of wind energy as a power source in Turkmenistan; a major opportunity for Central Asia's energy market," Energy, Elsevier, vol. 183(C), pages 415-427.
    12. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    13. Sedaghat, Ahmad & El Haj Assad, M. & Gaith, Mohamed, 2014. "Aerodynamics performance of continuously variable speed horizontal axis wind turbine with optimal blades," Energy, Elsevier, vol. 77(C), pages 752-759.
    14. Sergei Kolesnik & Yossi Rabinovitz & Michael Byalsky & Asher Yahalom & Alon Kuperman, 2023. "Assessment of Wind Speed Statistics in Samaria Region and Potential Energy Production," Energies, MDPI, vol. 16(9), pages 1-35, May.
    15. M. A. Hannan & Ali Q. Al-Shetwi & M. S. Mollik & Pin Jern Ker & M. Mannan & M. Mansor & Hussein M. K. Al-Masri & T. M. Indra Mahlia, 2023. "Wind Energy Conversions, Controls, and Applications: A Review for Sustainable Technologies and Directions," Sustainability, MDPI, vol. 15(5), pages 1-30, February.
    16. Lanzafame, R. & Messina, M., 2013. "Advanced brake state model and aerodynamic post-stall model for horizontal axis wind turbines," Renewable Energy, Elsevier, vol. 50(C), pages 415-420.
    17. MacPhee, David W. & Beyene, Asfaw, 2015. "Experimental and Fluid Structure Interaction analysis of a morphing wind turbine rotor," Energy, Elsevier, vol. 90(P1), pages 1055-1065.
    18. Mérida, Jován & Aguilar, Luis T. & Dávila, Jorge, 2014. "Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization," Renewable Energy, Elsevier, vol. 71(C), pages 715-728.
    19. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
    20. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:86:y:2016:i:c:p:206-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.