IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i1p301-306.html
   My bibliography  Save this article

Horizontal axis wind turbine working at maximum power coefficient continuously

Author

Listed:
  • Lanzafame, R.
  • Messina, M.

Abstract

The performance of a horizontal axis wind turbine continuously operating at its maximum power coefficient was evaluated by a calculation code based on Blade Element Momentum (BEM) theory. It was then evaluated for performance and Annual Energy Production (AEP) at a constant standard rotational velocity as well as at a variable velocity but at its maximum power coefficient.

Suggested Citation

  • Lanzafame, R. & Messina, M., 2010. "Horizontal axis wind turbine working at maximum power coefficient continuously," Renewable Energy, Elsevier, vol. 35(1), pages 301-306.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:1:p:301-306
    DOI: 10.1016/j.renene.2009.06.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109002869
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.06.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lanzafame, R. & Messina, M., 2007. "Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory," Renewable Energy, Elsevier, vol. 32(14), pages 2291-2305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yun-Su Kim & Il-Yop Chung & Seung-Il Moon, 2015. "Tuning of the PI Controller Parameters of a PMSG Wind Turbine to Improve Control Performance under Various Wind Speeds," Energies, MDPI, vol. 8(2), pages 1-20, February.
    2. Kashif Sohail & Hooman Farzaneh, 2022. "Model for Optimal Power Coefficient Tracking and Loss Reduction of the Wind Turbine Systems," Energies, MDPI, vol. 15(11), pages 1-19, June.
    3. Sedaghat, Ahmad & El Haj Assad, M. & Gaith, Mohamed, 2014. "Aerodynamics performance of continuously variable speed horizontal axis wind turbine with optimal blades," Energy, Elsevier, vol. 77(C), pages 752-759.
    4. Tavares Dias do Rio Vaz, Déborah Aline & Vaz, Jerson Rogério Pinheiro & Mesquita, André Luiz Amarante & Pinho, João Tavares & Pinho Brasil Junior, Antonio Cesar, 2013. "Optimum aerodynamic design for wind turbine blade with a Rankine vortex wake," Renewable Energy, Elsevier, vol. 55(C), pages 296-304.
    5. Dai, Juchuan & Liu, Deshun & Wen, Li & Long, Xin, 2016. "Research on power coefficient of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 86(C), pages 206-215.
    6. Lanzafame, R. & Messina, M., 2012. "BEM theory: How to take into account the radial flow inside of a 1-D numerical code," Renewable Energy, Elsevier, vol. 39(1), pages 440-446.
    7. He-Yong Xu & Qing-Li Dong & Chen-Liang Qiao & Zheng-Yin Ye, 2018. "Flow Control over the Blunt Trailing Edge of Wind Turbine Airfoils Using Circulation Control," Energies, MDPI, vol. 11(3), pages 1-26, March.
    8. Lanzafame, R. & Messina, M., 2013. "Advanced brake state model and aerodynamic post-stall model for horizontal axis wind turbines," Renewable Energy, Elsevier, vol. 50(C), pages 415-420.
    9. Md Rasel Sarkar & Sabariah Julai & Chong Wen Tong & Moslem Uddin & M.F. Romlie & GM Shafiullah, 2020. "Hybrid Pitch Angle Controller Approaches for Stable Wind Turbine Power under Variable Wind Speed," Energies, MDPI, vol. 13(14), pages 1-19, July.
    10. Gugliani, Gaurav Kumar & Sarkar, Arnab & Ley, Christophe & Matsagar, Vasant, 2021. "Identification of optimum wind turbine parameters for varying wind climates using a novel month-based turbine performance index," Renewable Energy, Elsevier, vol. 171(C), pages 902-914.
    11. Venkaiah, P. & Sarkar, Bikash K., 2020. "Hydraulically actuated horizontal axis wind turbine pitch control by model free adaptive controller," Renewable Energy, Elsevier, vol. 147(P1), pages 55-68.
    12. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
    13. Lanzafame, R. & Mauro, S. & Messina, M., 2013. "Wind turbine CFD modeling using a correlation-based transitional model," Renewable Energy, Elsevier, vol. 52(C), pages 31-39.
    14. Shukla, Vivek & Kaviti, Ajay Kumar, 2017. "Performance evaluation of profile modifications on straight-bladed vertical axis wind turbine by energy and Spalart Allmaras models," Energy, Elsevier, vol. 126(C), pages 766-795.
    15. Sedaghat, Ahmad & Hassanzadeh, Arash & Jamali, Jamaloddin & Mostafaeipour, Ali & Chen, Wei-Hsin, 2017. "Determination of rated wind speed for maximum annual energy production of variable speed wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 781-789.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauro, S. & Lanzafame, R. & Messina, M. & Brusca, S., 2023. "On the importance of the root-to-hub adapter effects on HAWT performance: A CFD-BEM numerical investigation," Energy, Elsevier, vol. 275(C).
    2. Li, B. & Zhou, D.L. & Wang, Y. & Shuai, Y. & Liu, Q.Z. & Cai, W.H., 2020. "The design of a small lab-scale wind turbine model with high performance similarity to its utility-scale prototype," Renewable Energy, Elsevier, vol. 149(C), pages 435-444.
    3. Ikeda, Teruaki & Tanaka, Hiroto & Yoshimura, Ryosuke & Noda, Ryusuke & Fujii, Takeo & Liu, Hao, 2018. "A robust biomimetic blade design for micro wind turbines," Renewable Energy, Elsevier, vol. 125(C), pages 155-165.
    4. Imraan, Mustahib & Sharma, Rajnish N. & Flay, Richard G.J., 2013. "Wind tunnel testing of a wind turbine with telescopic blades: The influence of blade extension," Energy, Elsevier, vol. 53(C), pages 22-32.
    5. Shen, Xin & Chen, Jin-Ge & Zhu, Xiao-Cheng & Liu, Peng-Yin & Du, Zhao-Hui, 2015. "Multi-objective optimization of wind turbine blades using lifting surface method," Energy, Elsevier, vol. 90(P1), pages 1111-1121.
    6. Lanzafame, R. & Mauro, S. & Messina, M., 2013. "Wind turbine CFD modeling using a correlation-based transitional model," Renewable Energy, Elsevier, vol. 52(C), pages 31-39.
    7. Dallatu Abbas Umar & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Ammar Ahmed Alkahtani & Talal Yusaf, 2022. "Design and Optimization of a Small-Scale Horizontal Axis Wind Turbine Blade for Energy Harvesting at Low Wind Profile Areas," Energies, MDPI, vol. 15(9), pages 1-22, April.
    8. Syed Ahmed Kabir, Ijaz Fazil & Ng, E.Y.K., 2017. "Insight into stall delay and computation of 3D sectional aerofoil characteristics of NREL phase VI wind turbine using inverse BEM and improvement in BEM analysis accounting for stall delay effect," Energy, Elsevier, vol. 120(C), pages 518-536.
    9. Dai, J.C. & Hu, Y.P. & Liu, D.S. & Long, X., 2011. "Aerodynamic loads calculation and analysis for large scale wind turbine based on combining BEM modified theory with dynamic stall model," Renewable Energy, Elsevier, vol. 36(3), pages 1095-1104.
    10. Dai, Juchuan & Li, Mimi & Chen, Huanguo & He, Tao & Zhang, Fan, 2022. "Progress and challenges on blade load research of large-scale wind turbines," Renewable Energy, Elsevier, vol. 196(C), pages 482-496.
    11. Dai, Juchuan & Yang, Xin & Hu, Wei & Wen, Li & Tan, Yayi, 2018. "Effect investigation of yaw on wind turbine performance based on SCADA data," Energy, Elsevier, vol. 149(C), pages 684-696.
    12. Pan He & Jian Xia, 2022. "Study on the Influence of Low-Level Jet on the Aerodynamic Characteristics of Horizontal Axis Wind Turbine Rotor Based on the Aerodynamics–Controller Interaction Method," Energies, MDPI, vol. 15(8), pages 1-18, April.
    13. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    14. Chi-Jeng Bai & Wei-Cheng Wang & Po-Wei Chen & Wen-Tong Chong, 2014. "System Integration of the Horizontal-Axis Wind Turbine: The Design of Turbine Blades with an Axial-Flux Permanent Magnet Generator," Energies, MDPI, vol. 7(11), pages 1-21, November.
    15. Tavares Dias do Rio Vaz, Déborah Aline & Vaz, Jerson Rogério Pinheiro & Mesquita, André Luiz Amarante & Pinho, João Tavares & Pinho Brasil Junior, Antonio Cesar, 2013. "Optimum aerodynamic design for wind turbine blade with a Rankine vortex wake," Renewable Energy, Elsevier, vol. 55(C), pages 296-304.
    16. Rajakumar, S. & Ravindran, D., 2012. "Iterative approach for optimising coefficient of power, coefficient of lift and drag of wind turbine rotor," Renewable Energy, Elsevier, vol. 38(1), pages 83-93.
    17. Han, Xingxing & Liu, Deyou & Xu, Chang & Shen, Wen Zhong, 2020. "Similarity functions and a new k−ε closure for predicting stratified atmospheric surface layer flows in complex terrain," Renewable Energy, Elsevier, vol. 150(C), pages 907-917.
    18. Du, Weikang & Zhao, Yongsheng & He, Yanping & Liu, Yadong, 2016. "Design, analysis and test of a model turbine blade for a wave basin test of floating wind turbines," Renewable Energy, Elsevier, vol. 97(C), pages 414-421.
    19. Capuzzi, M. & Pirrera, A. & Weaver, P.M., 2014. "A novel adaptive blade concept for large-scale wind turbines. Part I: Aeroelastic behaviour," Energy, Elsevier, vol. 73(C), pages 15-24.
    20. Wang, Lin & Liu, Xiongwei & Kolios, Athanasios, 2016. "State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 195-210.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:1:p:301-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.