IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58456-4.html
   My bibliography  Save this article

A machine learning model for hub-height short-term wind speed prediction

Author

Listed:
  • Zongwei Zhang

    (Harbin Institute of Technology
    Technological Innovation Center of Littoral Test)

  • Lianlei Lin

    (Harbin Institute of Technology
    Technological Innovation Center of Littoral Test)

  • Sheng Gao

    (Harbin Institute of Technology
    Technological Innovation Center of Littoral Test)

  • Junkai Wang

    (Harbin Institute of Technology
    Technological Innovation Center of Littoral Test)

  • Hanqing Zhao

    (Harbin Institute of Technology
    Technological Innovation Center of Littoral Test)

  • Hangyi Yu

    (Harbin Institute of Technology
    Technological Innovation Center of Littoral Test)

Abstract

Accurate short-term wind speed prediction is crucial for maintaining the safe, stable, and efficient operation of wind power systems. We propose a multivariate meteorological data fusion wind prediction network (MFWPN) to study fine-grid vector wind speed prediction, taking Northeast China as an example. Results show that MFWPN outperforms the ECMWF-HRES model regarding vector wind speed prediction accuracy within the first 6 h. Transfer experiments demonstrate the good generalized performance of the MFWPN, which can be quickly applied to offsite prediction. Efficiency experiments show that the MFWPN takes only 18 ms to predict vector wind speeds on a 24-hour fine grid over the future northeastern region. With its demonstrated accuracy and efficiency, the MFWPN can be an effective tool for predicting vector wind speeds in large regional wind centers and can help in ultrashort- and short-term deployment planning for wind power.

Suggested Citation

  • Zongwei Zhang & Lianlei Lin & Sheng Gao & Junkai Wang & Hanqing Zhao & Hangyi Yu, 2025. "A machine learning model for hub-height short-term wind speed prediction," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58456-4
    DOI: 10.1038/s41467-025-58456-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58456-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58456-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gao, Huanxiang & Hu, Gang & Zhang, Dongqin & Jiang, Wenjun & Ren, Hehe & Chen, Wenli, 2024. "Prediction of wind fields in mountains at multiple elevations using deep learning models," Applied Energy, Elsevier, vol. 353(PA).
    2. Yu, Shuang & Vautard, Robert, 2022. "A transfer method to estimate hub-height wind speed from 10 meters wind speed based on machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
    4. Lei Chen & Xiaohui Zhong & Hao Li & Jie Wu & Bo Lu & Deliang Chen & Shang-Ping Xie & Libo Wu & Qingchen Chao & Chensen Lin & Zixin Hu & Yuan Qi, 2024. "A machine learning model that outperforms conventional global subseasonal forecast models," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Lv, Sheng-Xiang & Wang, Lin, 2023. "Multivariate wind speed forecasting based on multi-objective feature selection approach and hybrid deep learning model," Energy, Elsevier, vol. 263(PE).
    6. Liu, Zhenkun & Jiang, Ping & Zhang, Lifang & Niu, Xinsong, 2020. "A combined forecasting model for time series: Application to short-term wind speed forecasting," Applied Energy, Elsevier, vol. 259(C).
    7. Song, Feng & Bi, De & Wei, Chu, 2019. "Market segmentation and wind curtailment: An empirical analysis," Energy Policy, Elsevier, vol. 132(C), pages 831-838.
    8. Farah, Shahid & David A, Wood & Humaira, Nisar & Aneela, Zameer & Steffen, Eger, 2022. "Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Zhang, Zongwei & Lin, Lianlei & Gao, Sheng & Wang, Junkai & Zhao, Hanqing, 2024. "Wind speed prediction in China with fully-convolutional deep neural network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    10. Shang, Zhihao & He, Zhaoshuang & Chen, Yao & Chen, Yanhua & Xu, MingLiang, 2022. "Short-term wind speed forecasting system based on multivariate time series and multi-objective optimization," Energy, Elsevier, vol. 238(PC).
    11. Aasim, & Singh, S.N. & Mohapatra, Abheejeet, 2019. "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting," Renewable Energy, Elsevier, vol. 136(C), pages 758-768.
    12. Tawn, R. & Browell, J., 2022. "A review of very short-term wind and solar power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    13. Hoolohan, Victoria & Tomlin, Alison S. & Cockerill, Timothy, 2018. "Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data," Renewable Energy, Elsevier, vol. 126(C), pages 1043-1054.
    14. Yan, Bowen & Shen, Ruifang & Li, Ke & Wang, Zhenguo & Yang, Qingshan & Zhou, Xuhong & Zhang, Le, 2023. "Spatio-temporal correlation for simultaneous ultra-short-term wind speed prediction at multiple locations," Energy, Elsevier, vol. 284(C).
    15. Shukur, Osamah Basheer & Lee, Muhammad Hisyam, 2015. "Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA," Renewable Energy, Elsevier, vol. 76(C), pages 637-647.
    16. Wu, Qiang & Zheng, Hongling & Guo, Xiaozhu & Liu, Guangqiang, 2022. "Promoting wind energy for sustainable development by precise wind speed prediction based on graph neural networks," Renewable Energy, Elsevier, vol. 199(C), pages 977-992.
    17. Erdem, Ergin & Shi, Jing, 2011. "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, Elsevier, vol. 88(4), pages 1405-1414, April.
    18. Nicky Dean, 2022. "Collaborating on Clean Energy Action," Nature Energy, Nature, vol. 7(9), pages 785-787, September.
    19. Fenghua Ling & Jing-Jia Luo & Yue Li & Tao Tang & Lei Bai & Wanli Ouyang & Toshio Yamagata, 2022. "Multi-task machine learning improves multi-seasonal prediction of the Indian Ocean Dipole," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    2. Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
    3. Li, Ke & Shen, Ruifang & Wang, Zhenguo & Yan, Bowen & Yang, Qingshan & Zhou, Xuhong, 2023. "An efficient wind speed prediction method based on a deep neural network without future information leakage," Energy, Elsevier, vol. 267(C).
    4. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    5. Jiang, Wenjun & Liu, Bo & Liang, Yang & Gao, Huanxiang & Lin, Pengfei & Zhang, Dongqin & Hu, Gang, 2024. "Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables," Applied Energy, Elsevier, vol. 353(PB).
    6. Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
    7. Liang, Yang & Zhang, Dongqin & Zhang, Jize & Hu, Gang, 2024. "A state-of-the-art analysis on decomposition method for short-term wind speed forecasting using LSTM and a novel hybrid deep learning model," Energy, Elsevier, vol. 313(C).
    8. Yang, Mao & Huang, Yutong & Xu, Chuanyu & Liu, Chenyu & Dai, Bozhi, 2025. "Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations," Applied Energy, Elsevier, vol. 377(PC).
    9. Lu, Peng & Ye, Lin & Tang, Yong & Zhao, Yongning & Zhong, Wuzhi & Qu, Ying & Zhai, Bingxu, 2021. "Ultra-short-term combined prediction approach based on kernel function switch mechanism," Renewable Energy, Elsevier, vol. 164(C), pages 842-866.
    10. Sun, Xiaoying & Liu, Haizhong, 2024. "Multivariate short-term wind speed prediction based on PSO-VMD-SE-ICEEMDAN two-stage decomposition and Att-S2S," Energy, Elsevier, vol. 305(C).
    11. Zhang, Dongqin & Hu, Gang & Song, Jie & Gao, Huanxiang & Ren, Hehe & Chen, Wenli, 2024. "A novel spatio-temporal wind speed forecasting method based on the microscale meteorological model and a hybrid deep learning model," Energy, Elsevier, vol. 288(C).
    12. Li, Jingrui & Wang, Jiyang & Li, Zhiwu, 2023. "A novel combined forecasting system based on advanced optimization algorithm - A study on optimal interval prediction of wind speed," Energy, Elsevier, vol. 264(C).
    13. Wang, Yaqi & Zhao, Xiaomeng & Li, Zheng & Zhu, Wenbo & Gui, Renzhou, 2024. "A novel hybrid model for multi-step-ahead forecasting of wind speed based on univariate data feature enhancement," Energy, Elsevier, vol. 312(C).
    14. Shang, Zhihao & He, Zhaoshuang & Chen, Yao & Chen, Yanhua & Xu, MingLiang, 2022. "Short-term wind speed forecasting system based on multivariate time series and multi-objective optimization," Energy, Elsevier, vol. 238(PC).
    15. Tawn, R. & Browell, J., 2022. "A review of very short-term wind and solar power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    16. Wang, Han & Li, Yunzhou & Yan, Jie & Xiao, Wuyang & Han, Shuang & Liu, Yongqian, 2025. "A novel minute-scale prediction method of incoming wind conditions with limited LiDAR data," Renewable Energy, Elsevier, vol. 240(C).
    17. Liu, Xingdou & Zhang, Li & Wang, Jiangong & Zhou, Yue & Gan, Wei, 2023. "A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data," Renewable Energy, Elsevier, vol. 211(C), pages 948-963.
    18. Tian, Zhongda & Chen, Hao, 2021. "Multi-step short-term wind speed prediction based on integrated multi-model fusion," Applied Energy, Elsevier, vol. 298(C).
    19. Li, Shaopeng & Li, Xin & Jiang, Yan & Yang, Qingshan & Lin, Min & Peng, Liuliu & Yu, Jianhan, 2025. "A novel frequency-domain physics-informed neural network for accurate prediction of 3D spatio-temporal wind fields in wind turbine applications," Applied Energy, Elsevier, vol. 386(C).
    20. Ai, Chunyu & He, Shan & Hu, Heng & Fan, Xiaochao & Wang, Weiqing, 2023. "Chaotic time series wind power interval prediction based on quadratic decomposition and intelligent optimization algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58456-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.