IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i4p1405-1414.html
   My bibliography  Save this article

ARMA based approaches for forecasting the tuple of wind speed and direction

Author

Listed:
  • Erdem, Ergin
  • Shi, Jing

Abstract

Short-term forecasting of wind speed and direction is of great importance to wind turbine operation and efficient energy harvesting. In this study, the forecasting of wind speed and direction tuple is performed. Four approaches based on autoregressive moving average (ARMA) method are employed for this purpose. The first approach features the decomposition of the wind speed into lateral and longitudinal components. Each component is represented by an ARMA model, and the results are combined to obtain the wind direction and speed forecasts. The second approach employs two independent ARMA models - a traditional ARMA model for predicting wind speed and a linked ARMA model for wind direction. The third approach features vector autoregression (VAR) models to forecast the tuple of wind attributes. The fourth approach involves employing a restricted version of the VAR approach to predict the same. By employing these four approaches, the hourly mean wind attributes are forecasted 1-h ahead for two wind observation sites in North Dakota, USA. The results are compared using the mean absolute error (MAE) as a measure for forecasting quality. It is found that the component model is better at predicting the wind direction than the traditional-linked ARMA model, whereas the opposite is observed for wind speed forecasting. Utilizing VAR approaches rather than the univariate counterparts brings modest improvement in wind direction prediction but not in wind speed prediction. Between restricted and unrestricted versions of VAR models, there is little difference in terms of forecasting performance.

Suggested Citation

  • Erdem, Ergin & Shi, Jing, 2011. "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, Elsevier, vol. 88(4), pages 1405-1414, April.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:4:p:1405-1414
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00433-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henning Bohn, 1998. "The Behavior of U. S. Public Debt and Deficits," The Quarterly Journal of Economics, Oxford University Press, vol. 113(3), pages 949-963.
    2. Morales, J.M. & Mínguez, R. & Conejo, A.J., 2010. "A methodology to generate statistically dependent wind speed scenarios," Applied Energy, Elsevier, vol. 87(3), pages 843-855, March.
    3. Robertson, John C & Tallman, Ellis W, 2001. "Improving Federal-Funds Rate Forecasts in VAR Models Used for Policy Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 324-330, July.
    4. Thiaw, L. & Sow, G. & Fall, S.S. & Kasse, M. & Sylla, E. & Thioye, S., 2010. "A neural network based approach for wind resource and wind generators production assessment," Applied Energy, Elsevier, vol. 87(5), pages 1744-1748, May.
    5. Xydis, G. & Koroneos, C. & Loizidou, M., 2009. "Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: A case study in Southern Greece," Applied Energy, Elsevier, vol. 86(11), pages 2411-2420, November.
    6. Vereda, Luciano & Lopes, Hélio & Fukuda, Regina, 2008. "Estimating VAR models for the term structure of interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 548-559, April.
    7. Buckle, Robert A. & Kim, Kunhong & Kirkham, Heather & McLellan, Nathan & Sharma, Jarad, 2007. "A structural VAR business cycle model for a volatile small open economy," Economic Modelling, Elsevier, vol. 24(6), pages 990-1017, November.
    8. Carolin Mabel, M. & Fernandez, E., 2008. "Analysis of wind power generation and prediction using ANN: A case study," Renewable Energy, Elsevier, vol. 33(5), pages 986-992.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:4:p:1405-1414. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.