IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i3p843-855.html
   My bibliography  Save this article

A methodology to generate statistically dependent wind speed scenarios

Author

Listed:
  • Morales, J.M.
  • Mínguez, R.
  • Conejo, A.J.

Abstract

Wind power - a renewable energy source increasingly attractive from an economic viewpoint - constitutes an electricity production alternative of growing relevance in current electric energy systems. However, wind power is an intermittent source that cannot be dispatched at the will of the producer. Modeling wind power production requires characterizing wind speed at the sites where the wind farms are located. The wind speed at a particular location can be described through a stochastic process that is spatially correlated with the stochastic processes describing wind speeds at other locations. This paper provides a methodology to characterize the stochastic processes pertaining to wind speed at different geographical locations via scenarios. Each one of these scenarios embodies time dependencies and is spatially dependent of the scenarios describing other wind stochastic processes. The scenarios generated by the proposed methodology are intended to be used within stochastic programming decision models to make informed decisions pertaining to wind power production. The methodology proposed is accurate in reproducing wind speed historical series as well as computationally efficient. A comprehensive case study is used to illustrate the capabilities of the proposed methodology. Appropriate conclusions are finally drawn.

Suggested Citation

  • Morales, J.M. & Mínguez, R. & Conejo, A.J., 2010. "A methodology to generate statistically dependent wind speed scenarios," Applied Energy, Elsevier, vol. 87(3), pages 843-855, March.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:3:p:843-855
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00414-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feretić, Danilo & Tomšić, Željko & Čavlina, Nikola, 1999. "Feasibility analysis of wind-energy utilization in Croatia," Energy, Elsevier, vol. 24(3), pages 239-246.
    2. Celik, A.N., 2003. "Assessing the suitability of wind speed probabilty distribution functions based on wind power density," Renewable Energy, Elsevier, vol. 28(10), pages 1563-1574.
    3. Mohr, Markus & Unger, Hermann, 1999. "Economic reassessment of energy technologies with risk-management techniques," Applied Energy, Elsevier, vol. 64(1-4), pages 165-173, September.
    4. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    5. Østergaard, Poul Alberg, 2006. "Ancillary services and the integration of substantial quantities of wind power," Applied Energy, Elsevier, vol. 83(5), pages 451-463, May.
    6. Lun, Isaac Y.F & Lam, Joseph C, 2000. "A study of Weibull parameters using long-term wind observations," Renewable Energy, Elsevier, vol. 20(2), pages 145-153.
    7. Jitka Dupačová & Giorgio Consigli & Stein Wallace, 2000. "Scenarios for Multistage Stochastic Programs," Annals of Operations Research, Springer, vol. 100(1), pages 25-53, December.
    8. Luickx, Patrick J. & Delarue, Erik D. & D'haeseleer, William D., 2008. "Considerations on the backup of wind power: Operational backup," Applied Energy, Elsevier, vol. 85(9), pages 787-799, September.
    9. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Tan, Q., 2009. "Identification of optimal strategies for energy management systems planning under multiple uncertainties," Applied Energy, Elsevier, vol. 86(4), pages 480-495, April.
    10. Aghaei, J. & Shayanfar, H.A. & Amjady, N., 2009. "Joint market clearing in a stochastic framework considering power system security," Applied Energy, Elsevier, vol. 86(9), pages 1675-1682, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    2. Liu, Pei-chen Barry & Hansen, Mark & Mukherjee, Avijit, 2008. "Scenario-based air traffic flow management: From theory to practice," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 685-702, August.
    3. Gulpinar, Nalan & Rustem, Berc & Settergren, Reuben, 2004. "Simulation and optimization approaches to scenario tree generation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1291-1315, April.
    4. Murat Köksalan & Ceren Tuncer Şakar, 2016. "An interactive approach to stochastic programming-based portfolio optimization," Annals of Operations Research, Springer, vol. 245(1), pages 47-66, October.
    5. Hongling, Liu & Chuanwen, Jiang & Yan, Zhang, 2008. "A review on risk-constrained hydropower scheduling in deregulated power market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1465-1475, June.
    6. Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.
    7. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    8. Staino, Alessandro & Russo, Emilio, 2015. "A moment-matching method to generate arbitrage-free scenarios," European Journal of Operational Research, Elsevier, vol. 246(2), pages 619-630.
    9. Zhao, Daping & Bai, Lin & Fang, Yong & Wang, Shouyang, 2022. "Multi‐period portfolio selection with investor views based on scenario tree," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    10. Consiglio, Andrea & Carollo, Angelo & Zenios, Stavros A., 2014. "Generating Multi-factor Arbitrage-Free Scenario Trees with Global Optimization," Working Papers 13-35, University of Pennsylvania, Wharton School, Weiss Center.
    11. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    12. Latorre, Jesus M & Cerisola, Santiago & Ramos, Andres, 2007. "Clustering algorithms for scenario tree generation: Application to natural hydro inflows," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1339-1353, September.
    13. Consiglio, Andrea & De Giovanni, Domenico, 2008. "Evaluation of insurance products with guarantee in incomplete markets," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 332-342, February.
    14. Amjady, Nima & Keynia, Farshid, 2010. "A new spinning reserve requirement forecast method for deregulated electricity markets," Applied Energy, Elsevier, vol. 87(6), pages 1870-1879, June.
    15. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    16. S C H Leung & K K Lai & W-L Ng & Y Wu, 2007. "A robust optimization model for production planning of perishable products," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 413-422, April.
    17. Andrea Consiglio & Domenico De Giovanni, 2010. "Pricing the Option to Surrender in Incomplete Markets," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(4), pages 935-957, December.
    18. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2008. "A dynamic stochastic programming model for international portfolio management," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1501-1524, March.
    19. Michal Kaut & Stein Wallace, 2011. "Shape-based scenario generation using copulas," Computational Management Science, Springer, vol. 8(1), pages 181-199, April.
    20. Michal Kaut & Kjetil Midthun & Adrian Werner & Asgeir Tomasgard & Lars Hellemo & Marte Fodstad, 2014. "Multi-horizon stochastic programming," Computational Management Science, Springer, vol. 11(1), pages 179-193, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:3:p:843-855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.