Accelerated wind farm yaw and layout optimisation with multi-fidelity deep transfer learning wake models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2023.119293
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Pawar, Suraj & Sharma, Ashesh & Vijayakumar, Ganesh & Bay, Chrstopher J. & Yellapantula, Shashank & San, Omer, 2022. "Towards multi-fidelity deep learning of wind turbine wakes," Renewable Energy, Elsevier, vol. 200(C), pages 867-879.
- Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
- Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
- J. K. Lundquist & K. K. DuVivier & D. Kaffine & J. M. Tomaszewski, 2019.
"Publisher Correction: Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development,"
Nature Energy, Nature, vol. 4(3), pages 251-251, March.
- J. K. Lundquist & K. K. DuVivier & D. Kaffine & J. M. Tomaszewski, 2019. "Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development," Nature Energy, Nature, vol. 4(1), pages 26-34, January.
- Dou, Bingzheng & Qu, Timing & Lei, Liping & Zeng, Pan, 2020. "Optimization of wind turbine yaw angles in a wind farm using a three-dimensional yawed wake model," Energy, Elsevier, vol. 209(C).
- Antonio Cioffi & Claudia Muscari & Paolo Schito & Alberto Zasso, 2020. "A Steady-State Wind Farm Wake Model Implemented in OpenFAST," Energies, MDPI, vol. 13(23), pages 1-16, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Han & Li, Yunzhou & Yan, Jie & Xiao, Wuyang & Han, Shuang & Liu, Yongqian, 2025. "A novel minute-scale prediction method of incoming wind conditions with limited LiDAR data," Renewable Energy, Elsevier, vol. 240(C).
- Bai, Guan & Feng, Yaojing & Ma, Zi-Qian & Li, Xueping, 2024. "An asynchronous distributed optimal wake control scheme for suppressing fatigue load and increasing power extraction in wind farms," Renewable Energy, Elsevier, vol. 232(C).
- Tu, Yu & Chen, Yaoran & Zhang, Kai & He, Ruiyang & Han, Zhaolong & Zhou, Dai, 2025. "A multi-fidelity framework for power prediction of wind farm under yaw misalignment," Applied Energy, Elsevier, vol. 377(PC).
- Mittal, Prateek & Christopoulos, Giorgos & Subramanian, Sriram, 2024. "Energy enhancement through noise minimization using acoustic metamaterials in a wind farm," Renewable Energy, Elsevier, vol. 224(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- He, Ruiyang & Yang, Hongxing & Sun, Haiying & Gao, Xiaoxia, 2021. "A novel three-dimensional wake model based on anisotropic Gaussian distribution for wind turbine wakes," Applied Energy, Elsevier, vol. 296(C).
- Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
- Li, Siyi & Zhang, Mingrui & Piggott, Matthew D., 2023. "End-to-end wind turbine wake modelling with deep graph representation learning," Applied Energy, Elsevier, vol. 339(C).
- Zilong, Ti & Xiao Wei, Deng, 2022. "Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads," Applied Energy, Elsevier, vol. 306(PA).
- Gu, Bo & Meng, Hang & Ge, Mingwei & Zhang, Hongtao & Liu, Xinyu, 2021. "Cooperative multiagent optimization method for wind farm power delivery maximization," Energy, Elsevier, vol. 233(C).
- Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
- Yildiz, Anil & Mern, John & Kochenderfer, Mykel J. & Howland, Michael F., 2023. "Towards sequential sensor placements on a wind farm to maximize lifetime energy and profit," Renewable Energy, Elsevier, vol. 216(C).
- Cai, Wei & Hu, Yang & Fang, Fang & Yao, Lujin & Liu, Jizhen, 2023. "Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines," Applied Energy, Elsevier, vol. 339(C).
- Yang, Shanghui & Deng, Xiaowei & Li, Qinglan, 2025. "A joint optimization framework for power and fatigue life based on cooperative wake steering of wind farm," Energy, Elsevier, vol. 319(C).
- Yang, Shanghui & Deng, Xiaowei & Ti, Zilong & Yan, Bowen & Yang, Qingshan, 2022. "Cooperative yaw control of wind farm using a double-layer machine learning framework," Renewable Energy, Elsevier, vol. 193(C), pages 519-537.
- Tu, Yu & Chen, Yaoran & Zhang, Kai & He, Ruiyang & Han, Zhaolong & Zhou, Dai, 2025. "A multi-fidelity framework for power prediction of wind farm under yaw misalignment," Applied Energy, Elsevier, vol. 377(PC).
- Chen, Zhenyu & Lin, Zhongwei & Zhai, Xiaoya & Liu, Jizhen, 2022. "Dynamic wind turbine wake reconstruction: A Koopman-linear flow estimator," Energy, Elsevier, vol. 238(PB).
- Pawar, Suraj & Sharma, Ashesh & Vijayakumar, Ganesh & Bay, Chrstopher J. & Yellapantula, Shashank & San, Omer, 2022. "Towards multi-fidelity deep learning of wind turbine wakes," Renewable Energy, Elsevier, vol. 200(C), pages 867-879.
- Yang, Qingshan & Zhang, Xingxin & Li, Tian & Law, Siu-seong & Zhou, Xuhong & Lu, Dawei, 2025. "Study on wind turbine wake effect and analytical model in hilly terrain," Renewable Energy, Elsevier, vol. 244(C).
- Song, Jeonghwan & Kim, Taewan & You, Donghyun, 2023. "Particle swarm optimization of a wind farm layout with active control of turbine yaws," Renewable Energy, Elsevier, vol. 206(C), pages 738-747.
- Zhang, Ziyu & Huang, Peng, 2023. "Prediction of multiple-wake velocity and wind power using a cosine-shaped wake model," Renewable Energy, Elsevier, vol. 219(P1).
- Yang, Shanghui & Deng, Xiaowei & Yang, Kun, 2024. "Machine-learning-based wind farm optimization through layout design and yaw control," Renewable Energy, Elsevier, vol. 224(C).
- Meng, Hang & Li, Li & Zhang, Jinhua, 2020. "A preliminary numerical study of the wake effects on the fatigue load for wind farm based on elastic actuator line model," Renewable Energy, Elsevier, vol. 162(C), pages 788-801.
- Tiago R. Lucas Frutuoso & Rui Castro & Ricardo B. Santos Pereira & Alexandra Moutinho, 2025. "Advancements in Wind Farm Control: Modelling and Multi-Objective Optimization Through Yaw-Based Wake Steering," Energies, MDPI, vol. 18(9), pages 1-29, April.
- Michael F. Howland & John O. Dabiri, 2019. "Wind Farm Modeling with Interpretable Physics-Informed Machine Learning," Energies, MDPI, vol. 12(14), pages 1-21, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012089. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.