Towards multi-fidelity deep learning of wind turbine wakes
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2022.10.013
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shakoor, Rabia & Hassan, Mohammad Yusri & Raheem, Abdur & Wu, Yuan-Kang, 2016. "Wake effect modeling: A review of wind farm layout optimization using Jensen׳s model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1048-1059.
- Dong, Hongyang & Zhang, Jincheng & Zhao, Xiaowei, 2021. "Intelligent wind farm control via deep reinforcement learning and high-fidelity simulations," Applied Energy, Elsevier, vol. 292(C).
- Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
- Wu, Yu-Ting & Porté-Agel, Fernando, 2015. "Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm," Renewable Energy, Elsevier, vol. 75(C), pages 945-955.
- Amin Niayifar & Fernando Porté-Agel, 2016. "Analytical Modeling of Wind Farms: A New Approach for Power Prediction," Energies, MDPI, vol. 9(9), pages 1-13, September.
- Yu-Ting Wu & Fernando Porté-Agel, 2012. "Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study," Energies, MDPI, vol. 5(12), pages 1-23, December.
- Zhang, Jincheng & Zhao, Xiaowei, 2021. "Three-dimensional spatiotemporal wind field reconstruction based on physics-informed deep learning," Applied Energy, Elsevier, vol. 300(C).
- Michael F. Howland & Jesús Bas Quesada & Juan José Pena Martínez & Felipe Palou Larrañaga & Neeraj Yadav & Jasvipul S. Chawla & Varun Sivaram & John O. Dabiri, 2022. "Collective wind farm operation based on a predictive model increases utility-scale energy production," Nature Energy, Nature, vol. 7(9), pages 818-827, September.
- Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
- Adaramola, M.S. & Krogstad, P.-Å., 2011. "Experimental investigation of wake effects on wind turbine performance," Renewable Energy, Elsevier, vol. 36(8), pages 2078-2086.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yang, Han & Yuan, Weimin & Zhu, Weijun & Sun, Zhenye & Zhang, Yanru & Zhou, Yingjie, 2024. "Wind turbine airfoil noise prediction using dedicated airfoil database and deep learning technology," Applied Energy, Elsevier, vol. 364(C).
- Li, Jinxing & Li, Yunzhu & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2023. "Multi-fidelity graph neural network for flow field data fusion of turbomachinery," Energy, Elsevier, vol. 285(C).
- Anagnostopoulos, Sokratis J. & Bauer, Jens & Clare, Mariana C.A. & Piggott, Matthew D., 2023. "Accelerated wind farm yaw and layout optimisation with multi-fidelity deep transfer learning wake models," Renewable Energy, Elsevier, vol. 218(C).
- Li, Changming & Liu, Bin & Wang, Shujie & Yuan, Peng & Lang, Xianpeng & Tan, Junzhe & Si, Xiancai, 2024. "Tidal turbine hydrofoil design and optimization based on deep learning," Renewable Energy, Elsevier, vol. 226(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
- Yang, Kun & Deng, Xiaowei & Ti, Zilong & Yang, Shanghui & Huang, Senbin & Wang, Yuhang, 2023. "A data-driven layout optimization framework of large-scale wind farms based on machine learning," Renewable Energy, Elsevier, vol. 218(C).
- Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
- Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
- Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
- Souaiby, Marwa & Porté-Agel, Fernando, 2024. "An improved analytical framework for flow prediction inside and downstream of wind farms," Renewable Energy, Elsevier, vol. 225(C).
- Li, Rui & Zhang, Jincheng & Zhao, Xiaowei, 2022. "Dynamic wind farm wake modeling based on a Bilateral Convolutional Neural Network and high-fidelity LES data," Energy, Elsevier, vol. 258(C).
- Hegazy, Amr & Blondel, Frédéric & Cathelain, Marie & Aubrun, Sandrine, 2022. "LiDAR and SCADA data processing for interacting wind turbine wakes with comparison to analytical wake models," Renewable Energy, Elsevier, vol. 181(C), pages 457-471.
- Zhang, Jincheng & Zhao, Xiaowei, 2020. "Quantification of parameter uncertainty in wind farm wake modeling," Energy, Elsevier, vol. 196(C).
- Kaldellis, John K. & Triantafyllou, Panagiotis & Stinis, Panagiotis, 2021. "Critical evaluation of Wind Turbines’ analytical wake models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Zhang, Jincheng & Zhao, Xiaowei, 2020. "A novel dynamic wind farm wake model based on deep learning," Applied Energy, Elsevier, vol. 277(C).
- Yang, Shanghui & Deng, Xiaowei & Yang, Kun, 2024. "Machine-learning-based wind farm optimization through layout design and yaw control," Renewable Energy, Elsevier, vol. 224(C).
- Yang, Xuefeng & Yu, Peining & Sui, Yi & Chen, Shengli & Xing, Jiuxing & Li, Lei, 2024. "A numerical study of rainfall effects on wind turbine wakes," Renewable Energy, Elsevier, vol. 230(C).
- Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel," Energy, Elsevier, vol. 166(C), pages 819-833.
- Purohit, Shantanu & Ng, E.Y.K. & Syed Ahmed Kabir, Ijaz Fazil, 2022. "Evaluation of three potential machine learning algorithms for predicting the velocity and turbulence intensity of a wind turbine wake," Renewable Energy, Elsevier, vol. 184(C), pages 405-420.
- Zhang, Jincheng & Zhao, Xiaowei, 2022. "Wind farm wake modeling based on deep convolutional conditional generative adversarial network," Energy, Elsevier, vol. 238(PB).
- Zhang, Ziyu & Huang, Peng & Bitsuamlak, Girma & Cao, Shuyang, 2024. "Large-eddy simulation of upwind-hill effects on wind-turbine wakes and power performance," Energy, Elsevier, vol. 294(C).
- Wang, Longyan & Luo, Wei & Xu, Jian & Xie, Junhang & Luo, Zhaohui & Tan, Andy C.C., 2022. "Comparative study of decentralized instantaneous and wind-interval-based controls for in-line two scale wind turbines," Renewable Energy, Elsevier, vol. 189(C), pages 1218-1233.
- Zilong, Ti & Xiao Wei, Deng, 2022. "Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads," Applied Energy, Elsevier, vol. 306(PA).
- Mingqiu Liu & Zhichang Liang & Haixiao Liu, 2022. "Numerical Investigations of Wake Expansion in the Offshore Wind Farm Using a Large Eddy Simulation," Energies, MDPI, vol. 15(6), pages 1-19, March.
More about this item
Keywords
Deep learning; Multi-fidelity data fusion; Dimensionality reduction; Wake prediction; Wind energy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:200:y:2022:i:c:p:867-879. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.