IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v70y2014icp116-123.html
   My bibliography  Save this article

A new analytical model for wind-turbine wakes

Author

Listed:
  • Bastankhah, Majid
  • Porté-Agel, Fernando

Abstract

A new analytical wake model is proposed and validated to predict the wind velocity distribution downwind of a wind turbine. The model is derived by applying conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This simple model only requires one parameter to determine the velocity distribution in the wake. The results are compared to high-resolution wind-tunnel measurements and large-eddy simulation (LES) data of miniature wind-turbine wakes, as well as LES data of real-scale wind-turbine wakes. In general, it is found that the velocity deficit in the wake predicted by the proposed analytical model is in good agreement with the experimental and LES data. The results also show that the new model predicts the power extracted by downwind wind turbines more accurately than other common analytical models, some of which are based on less accurate assumptions like considering a top-hat shape for the velocity deficit.

Suggested Citation

  • Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
  • Handle: RePEc:eee:renene:v:70:y:2014:i:c:p:116-123
    DOI: 10.1016/j.renene.2014.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114000317
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu-Ting Wu & Fernando Porté-Agel, 2012. "Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study," Energies, MDPI, vol. 5(12), pages 1-23, December.
    2. Marmidis, Grigorios & Lazarou, Stavros & Pyrgioti, Eleftheria, 2008. "Optimal placement of wind turbines in a wind park using Monte Carlo simulation," Renewable Energy, Elsevier, vol. 33(7), pages 1455-1460.
    3. Kiranoudis, C.T. & Maroulis, Z.B., 1997. "Effective short-cut modelling of wind park efficiency," Renewable Energy, Elsevier, vol. 11(4), pages 439-457.
    4. Fernando Porté-Agel & Yu-Ting Wu & Chang-Hung Chen, 2013. "A Numerical Study of the Effects of Wind Direction on Turbine Wakes and Power Losses in a Large Wind Farm," Energies, MDPI, vol. 6(10), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
    2. Matthias Ritter & Simone Pieralli & Martin Odening, 2017. "Neighborhood Effects in Wind Farm Performance: A Regression Approach," Energies, MDPI, vol. 10(3), pages 1-16, March.
    3. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    4. Souaiby, Marwa & Porté-Agel, Fernando, 2024. "An improved analytical framework for flow prediction inside and downstream of wind farms," Renewable Energy, Elsevier, vol. 225(C).
    5. Feng, Ju & Shen, Wen Zhong, 2015. "Solving the wind farm layout optimization problem using random search algorithm," Renewable Energy, Elsevier, vol. 78(C), pages 182-192.
    6. Deepu Dilip & Fernando Porté-Agel, 2017. "Wind Turbine Wake Mitigation through Blade Pitch Offset," Energies, MDPI, vol. 10(6), pages 1-17, May.
    7. Li, Li & Wang, Bing & Ge, Mingwei & Huang, Zhi & Li, Xintao & Liu, Yongqian, 2023. "A novel superposition method for streamwise turbulence intensity of wind-turbine wakes," Energy, Elsevier, vol. 276(C).
    8. Jacob R. West & Sanjiva K. Lele, 2020. "Wind Turbine Performance in Very Large Wind Farms: Betz Analysis Revisited," Energies, MDPI, vol. 13(5), pages 1-25, March.
    9. Gonzalez-Rodriguez, Angel G. & Burgos-Payan, Manuel & Riquelme-Santos, Jesus & Serrano-Gonzalez, Javier, 2015. "Reducing computational effort in the calculation of annual energy produced in wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 656-665.
    10. Hou, Peng & Hu, Weihao & Chen, Cong & Soltani, Mohsen & Chen, Zhe, 2016. "Optimization of offshore wind farm layout in restricted zones," Energy, Elsevier, vol. 113(C), pages 487-496.
    11. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2021. "Wind Farm Area Shape Optimization Using Newly Developed Multi-Objective Evolutionary Algorithms," Energies, MDPI, vol. 14(14), pages 1-25, July.
    12. Serrano González, Javier & Burgos Payán, Manuel & Santos, Jesús Manuel Riquelme & González-Longatt, Francisco, 2014. "A review and recent developments in the optimal wind-turbine micro-siting problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 133-144.
    13. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2016. "Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model," Applied Energy, Elsevier, vol. 174(C), pages 192-200.
    14. Zhang, Ziyu & Huang, Peng, 2023. "Prediction of multiple-wake velocity and wind power using a cosine-shaped wake model," Renewable Energy, Elsevier, vol. 219(P1).
    15. Yang, Kun & Deng, Xiaowei & Ti, Zilong & Yang, Shanghui & Huang, Senbin & Wang, Yuhang, 2023. "A data-driven layout optimization framework of large-scale wind farms based on machine learning," Renewable Energy, Elsevier, vol. 218(C).
    16. Amin Niayifar & Fernando Porté-Agel, 2016. "Analytical Modeling of Wind Farms: A New Approach for Power Prediction," Energies, MDPI, vol. 9(9), pages 1-13, September.
    17. Tristan Revaz & Fernando Porté-Agel, 2021. "Large-Eddy Simulation of Wind Turbine Flows: A New Evaluation of Actuator Disk Models," Energies, MDPI, vol. 14(13), pages 1-22, June.
    18. Lin, Jian Wei & Zhu, Wei Jun & Shen, Wen Zhong, 2022. "New engineering wake model for wind farm applications," Renewable Energy, Elsevier, vol. 198(C), pages 1354-1363.
    19. Pankaj K. Jha & Earl P. N. Duque & Jessica L. Bashioum & Sven Schmitz, 2015. "Unraveling the Mysteries of Turbulence Transport in a Wind Farm," Energies, MDPI, vol. 8(7), pages 1-29, June.
    20. Fan, Xiantao & Ge, Mingwei & Tan, Wei & Li, Qi, 2021. "Impacts of coexisting buildings and trees on the performance of rooftop wind turbines: An idealized numerical study," Renewable Energy, Elsevier, vol. 177(C), pages 164-180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:70:y:2014:i:c:p:116-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.