IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v70y2014icp116-123.html
   My bibliography  Save this item

A new analytical model for wind-turbine wakes

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions," Applied Energy, Elsevier, vol. 242(C), pages 1383-1395.
  2. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
  3. Yang, Kun & Deng, Xiaowei & Ti, Zilong & Yang, Shanghui & Huang, Senbin & Wang, Yuhang, 2023. "A data-driven layout optimization framework of large-scale wind farms based on machine learning," Renewable Energy, Elsevier, vol. 218(C).
  4. Mahdi Abkar & Jens Nørkær Sørensen & Fernando Porté-Agel, 2018. "An Analytical Model for the Effect of Vertical Wind Veer on Wind Turbine Wakes," Energies, MDPI, vol. 11(7), pages 1-10, July.
  5. Hemmati, Reza & Hooshmand, Rahmat-Allah & Khodabakhshian, Amin, 2016. "Coordinated generation and transmission expansion planning in deregulated electricity market considering wind farms," Renewable Energy, Elsevier, vol. 85(C), pages 620-630.
  6. Hegazy, Amr & Blondel, Frédéric & Cathelain, Marie & Aubrun, Sandrine, 2022. "LiDAR and SCADA data processing for interacting wind turbine wakes with comparison to analytical wake models," Renewable Energy, Elsevier, vol. 181(C), pages 457-471.
  7. Aghsaee, Payam & Markfort, Corey D., 2018. "Effects of flow depth variations on the wake recovery behind a horizontal-axis hydrokinetic in-stream turbine," Renewable Energy, Elsevier, vol. 125(C), pages 620-629.
  8. Ziyu Zhang & Peng Huang & Haocheng Sun, 2020. "A Novel Analytical Wake Model with a Cosine-Shaped Velocity Deficit," Energies, MDPI, vol. 13(13), pages 1-20, June.
  9. Zhang, Shaohai & Gao, Xiaoxia & Ma, Wanli & Lu, Hongkun & Lv, Tao & Xu, Shinai & Zhu, Xiaoxun & Sun, Haiying & Wang, Yu, 2023. "Derivation and verification of three-dimensional wake model of multiple wind turbines based on super-Gaussian function," Renewable Energy, Elsevier, vol. 215(C).
  10. Sarlak, H. & Meneveau, C. & Sørensen, J.N., 2015. "Role of subgrid-scale modeling in large eddy simulation of wind turbine wake interactions," Renewable Energy, Elsevier, vol. 77(C), pages 386-399.
  11. Tiago R. Lucas Frutuoso & Rui Castro & Ricardo B. Santos Pereira & Alexandra Moutinho, 2025. "Advancements in Wind Farm Control: Modelling and Multi-Objective Optimization Through Yaw-Based Wake Steering," Energies, MDPI, vol. 18(9), pages 1-29, April.
  12. Guirguis, David & Romero, David A. & Amon, Cristina H., 2016. "Toward efficient optimization of wind farm layouts: Utilizing exact gradient information," Applied Energy, Elsevier, vol. 179(C), pages 110-123.
  13. Luo, Zhaohui & Wang, Longyan & Fu, Yanxia & Xu, Jian & Yuan, Jianping & Tan, Andy Chit, 2024. "Wind turbine dynamic wake flow estimation (DWFE) from sparse data via reduced-order modeling-based machine learning approach," Renewable Energy, Elsevier, vol. 237(PA).
  14. Nicolas Tobin & Ali M. Hamed & Leonardo P. Chamorro, 2015. "An Experimental Study on the Effects ofWinglets on the Wake and Performance of a ModelWind Turbine," Energies, MDPI, vol. 8(10), pages 1-18, October.
  15. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
  16. Abdelsalam, Ali M. & El-Shorbagy, M.A., 2018. "Optimization of wind turbines siting in a wind farm using genetic algorithm based local search," Renewable Energy, Elsevier, vol. 123(C), pages 748-755.
  17. Zhang, Jincheng & Zhao, Xiaowei, 2020. "Quantification of parameter uncertainty in wind farm wake modeling," Energy, Elsevier, vol. 196(C).
  18. Cazzaro, Davide & Trivella, Alessio & Corman, Francesco & Pisinger, David, 2022. "Multi-scale optimization of the design of offshore wind farms," Applied Energy, Elsevier, vol. 314(C).
  19. Barlas, Emre & Wu, Ka Ling & Zhu, Wei Jun & Porté-Agel, Fernando & Shen, Wen Zhong, 2018. "Variability of wind turbine noise over a diurnal cycle," Renewable Energy, Elsevier, vol. 126(C), pages 791-800.
  20. Dhiman, Harsh S. & Deb, Dipankar & Foley, Aoife M., 2020. "Bilateral Gaussian Wake Model Formulation for Wind Farms: A Forecasting based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
  21. Ge, Mingwei & Wu, Ying & Liu, Yongqian & Li, Qi, 2019. "A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes," Applied Energy, Elsevier, vol. 233, pages 975-984.
  22. Shakoor, Rabia & Hassan, Mohammad Yusri & Raheem, Abdur & Wu, Yuan-Kang, 2016. "Wake effect modeling: A review of wind farm layout optimization using Jensen׳s model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1048-1059.
  23. Anagnostopoulos, Sokratis J. & Bauer, Jens & Clare, Mariana C.A. & Piggott, Matthew D., 2023. "Accelerated wind farm yaw and layout optimisation with multi-fidelity deep transfer learning wake models," Renewable Energy, Elsevier, vol. 218(C).
  24. Tian, Sheng & Liu, Yongqian & Tian, Xinshou & Li, Baoliang & Chi, Yongning, 2024. "A wind farm control strategy for frequency regulation reserve: Optimize wake loss and frequency support capability," Renewable Energy, Elsevier, vol. 237(PB).
  25. Sun, Jili & Chen, Zheng & Yu, Hao & Gao, Shan & Wang, Bin & Ying, You & Sun, Yong & Qian, Peng & Zhang, Dahai & Si, Yulin, 2022. "Quantitative evaluation of yaw-misalignment and aerodynamic wake induced fatigue loads of offshore Wind turbines," Renewable Energy, Elsevier, vol. 199(C), pages 71-86.
  26. Li, Siyi & Zhang, Mingrui & Piggott, Matthew D., 2023. "End-to-end wind turbine wake modelling with deep graph representation learning," Applied Energy, Elsevier, vol. 339(C).
  27. Amin Niayifar & Fernando Porté-Agel, 2016. "Analytical Modeling of Wind Farms: A New Approach for Power Prediction," Energies, MDPI, vol. 9(9), pages 1-13, September.
  28. Sadek, Zein & Scott, Ryan & Hamilton, Nicholas & Cal, Raúl Bayoán, 2023. "A three-dimensional, analytical wind turbine wake model: Flow acceleration, empirical correlations, and continuity," Renewable Energy, Elsevier, vol. 209(C), pages 298-309.
  29. Parada, Leandro & Herrera, Carlos & Flores, Paulo & Parada, Victor, 2018. "Assessing the energy benefit of using a wind turbine micro-siting model," Renewable Energy, Elsevier, vol. 118(C), pages 591-601.
  30. van den Broek, Maarten J. & De Tavernier, Delphine & Sanderse, Benjamin & van Wingerden, Jan-Willem, 2022. "Adjoint optimisation for wind farm flow control with a free-vortex wake model," Renewable Energy, Elsevier, vol. 201(P1), pages 752-765.
  31. Razi, P. & Ramaprabhu, P. & Tarey, P. & Muglia, M. & Vermillion, C., 2022. "A low-order wake interaction modeling framework for the performance of ocean current turbines under turbulent conditions," Renewable Energy, Elsevier, vol. 200(C), pages 1602-1617.
  32. Esmail Mahmoodi & Mohammad Khezri & Arash Ebrahimi & Uwe Ritschel & Leonardo P. Chamorro & Ali Khanjari, 2023. "A Simple Model for Wake-Induced Aerodynamic Interaction of Wind Turbines," Energies, MDPI, vol. 16(15), pages 1-13, July.
  33. Shen, Wen Zhong & Lin, Jian Wei & Jiang, Yu Hang & Feng, Ju & Cheng, Li & Zhu, Wei Jun, 2023. "A novel yaw wake model for wind farm control applications," Renewable Energy, Elsevier, vol. 218(C).
  34. Pawar, Suraj & Sharma, Ashesh & Vijayakumar, Ganesh & Bay, Chrstopher J. & Yellapantula, Shashank & San, Omer, 2022. "Towards multi-fidelity deep learning of wind turbine wakes," Renewable Energy, Elsevier, vol. 200(C), pages 867-879.
  35. Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
  36. Mou Lin & Fernando Porté-Agel, 2019. "Large-Eddy Simulation of Yawed Wind-Turbine Wakes: Comparisons with Wind Tunnel Measurements and Analytical Wake Models," Energies, MDPI, vol. 12(23), pages 1-18, November.
  37. Archer, Cristina L. & Vasel-Be-Hagh, Ahmadreza & Yan, Chi & Wu, Sicheng & Pan, Yang & Brodie, Joseph F. & Maguire, A. Eoghan, 2018. "Review and evaluation of wake loss models for wind energy applications," Applied Energy, Elsevier, vol. 226(C), pages 1187-1207.
  38. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2021. "Wind Farm Area Shape Optimization Using Newly Developed Multi-Objective Evolutionary Algorithms," Energies, MDPI, vol. 14(14), pages 1-25, July.
  39. Dhiman, Harsh S. & Deb, Dipankar & Foley, Aoife M., 2020. "Lidar assisted wake redirection in wind farms: A data driven approach," Renewable Energy, Elsevier, vol. 152(C), pages 484-493.
  40. Siyu Tao & Andrés Feijóo & Jiemin Zhou & Gang Zheng, 2020. "Topology Design of an Offshore Wind Farm with Multiple Types of Wind Turbines in a Circular Layout," Energies, MDPI, vol. 13(3), pages 1-16, January.
  41. Zilong, Ti & Xiao Wei, Deng, 2022. "Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads," Applied Energy, Elsevier, vol. 306(PA).
  42. Wang, Qiulei & Ti, Zilong & Yang, Shanghui & Yang, Kun & Wang, Jiaji & Deng, Xiaowei, 2025. "Hierarchical dynamic wake modeling of wind turbine based on physics-informed generative deep learning," Applied Energy, Elsevier, vol. 378(PA).
  43. Yang, Shanghui & Deng, Xiaowei & Yang, Kun, 2024. "Machine-learning-based wind farm optimization through layout design and yaw control," Renewable Energy, Elsevier, vol. 224(C).
  44. Tian, Linlin & Song, Yilei & Xiao, Pengcheng & Zhao, Ning & Shen, Wenzhong & Zhu, Chunling, 2022. "A new three-dimensional analytical model for wind turbine wake turbulence intensity predictions," Renewable Energy, Elsevier, vol. 189(C), pages 762-776.
  45. Lingkan, Elizabeth H. & Buxton, Oliver R.H., 2023. "An assessment of the scalings for the streamwise evolution of turbulent quantities in wakes produced by porous objects," Renewable Energy, Elsevier, vol. 209(C), pages 1-9.
  46. Lam, H.F. & Peng, H.Y., 2016. "Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations," Renewable Energy, Elsevier, vol. 90(C), pages 386-398.
  47. Sudip Basack & Shantanu Dutta & Dipasri Saha, 2022. "Installation and Performance Study of a Vertical-Axis Wind Turbine Prototype Model," Sustainability, MDPI, vol. 14(23), pages 1-29, December.
  48. Arslan Salim Dar & Fernando Porté-Agel, 2022. "An Analytical Model for Wind Turbine Wakes under Pressure Gradient," Energies, MDPI, vol. 15(15), pages 1-13, July.
  49. repec:hum:wpaper:sfb649dp2016-012 is not listed on IDEAS
  50. Kyoungboo Yang, 2020. "Determining an Appropriate Parameter of Analytical Wake Models for Energy Capture and Layout Optimization on Wind Farms," Energies, MDPI, vol. 13(3), pages 1-17, February.
  51. Mahdi Abkar, 2018. "Theoretical Modeling of Vertical-Axis Wind Turbine Wakes," Energies, MDPI, vol. 12(1), pages 1-10, December.
  52. Michael F. Howland & John O. Dabiri, 2019. "Wind Farm Modeling with Interpretable Physics-Informed Machine Learning," Energies, MDPI, vol. 12(14), pages 1-21, July.
  53. Zhang, Jincheng & Zhao, Xiaowei, 2022. "Wind farm wake modeling based on deep convolutional conditional generative adversarial network," Energy, Elsevier, vol. 238(PB).
  54. Sun, Haiying & Yang, Hongxing, 2018. "Study on an innovative three-dimensional wind turbine wake model," Applied Energy, Elsevier, vol. 226(C), pages 483-493.
  55. Souaiby, Marwa & Porté-Agel, Fernando, 2024. "An improved analytical framework for flow prediction inside and downstream of wind farms," Renewable Energy, Elsevier, vol. 225(C).
  56. Zhou, Lei & Wen, Jiahao & Wang, Zhaokun & Deng, Pengru & Zhang, Hongfu, 2023. "High-fidelity wind turbine wake velocity prediction by surrogate model based on d-POD and LSTM," Energy, Elsevier, vol. 275(C).
  57. Pacheco de Sá Sarmiento, Franciene Izis & Goes Oliveira, Jorge Luiz & Passos, Júlio César, 2022. "Impact of atmospheric stability, wake effect and topography on power production at complex-terrain wind farm," Energy, Elsevier, vol. 239(PC).
  58. Dhoot, Aditya & Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2021. "Optimizing wind farms layouts for maximum energy production using probabilistic inference: Benchmarking reveals superior computational efficiency and scalability," Energy, Elsevier, vol. 223(C).
  59. Liu, Weiqi & Liu, Weixing & Zhang, Liang & Sheng, Qihu & Zhou, Binzhen, 2018. "A numerical model for wind turbine wakes based on the vortex filament method," Energy, Elsevier, vol. 157(C), pages 561-570.
  60. Javier Serrano González & Bruno López & Martín Draper, 2021. "Optimal Pitch Angle Strategy for Energy Maximization in Offshore Wind Farms Considering Gaussian Wake Model," Energies, MDPI, vol. 14(4), pages 1-18, February.
  61. Aditya H. Bhatt & Mireille Rodrigues & Federico Bernardoni & Stefano Leonardi & Armin Zare, 2023. "Stochastic Dynamical Modeling of Wind Farm Turbulence," Energies, MDPI, vol. 16(19), pages 1-24, September.
  62. Eikrem, Kjersti Solberg & Lorentzen, Rolf Johan & Faria, Ricardo & Stordal, Andreas Størksen & Godard, Alexandre, 2023. "Offshore wind farm layout optimization using ensemble methods," Renewable Energy, Elsevier, vol. 216(C).
  63. Antonio Cioffi & Claudia Muscari & Paolo Schito & Alberto Zasso, 2020. "A Steady-State Wind Farm Wake Model Implemented in OpenFAST," Energies, MDPI, vol. 13(23), pages 1-16, November.
  64. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel," Energy, Elsevier, vol. 166(C), pages 819-833.
  65. Sun, Haiying & Yang, Hongxing, 2020. "Numerical investigation of the average wind speed of a single wind turbine and development of a novel three-dimensional multiple wind turbine wake model," Renewable Energy, Elsevier, vol. 147(P1), pages 192-203.
  66. Feng, Dachuan & Gupta, Vikrant & Li, Larry K.B. & Wan, Minping, 2024. "An improved dynamic model for wind-turbine wake flow," Energy, Elsevier, vol. 290(C).
  67. Wang, Yangwei & Lin, Jiahuan & Zhang, Jun, 2022. "Investigation of a new analytical wake prediction method for offshore floating wind turbines considering an accurate incoming wind flow," Renewable Energy, Elsevier, vol. 185(C), pages 827-849.
  68. Li, Xuyang & Qiu, Yingning & Feng, Yanhui & Wang, Zheng, 2021. "Wind turbine power prediction considering wake effects with dual laser beam LiDAR measured yaw misalignment," Applied Energy, Elsevier, vol. 299(C).
  69. Xiong, Xue-Lu & Lyu, Pin & Chen, Wen-Li & Li, Hui, 2020. "Self-similarity in the wake of a semi-submersible offshore wind turbine considering the interaction with the wake of supporting platform," Renewable Energy, Elsevier, vol. 156(C), pages 328-341.
  70. Lin, Jian Wei & Zhu, Wei Jun & Shen, Wen Zhong, 2022. "New engineering wake model for wind farm applications," Renewable Energy, Elsevier, vol. 198(C), pages 1354-1363.
  71. Martin Geibel & Galih Bangga, 2022. "Data Reduction and Reconstruction of Wind Turbine Wake Employing Data Driven Approaches," Energies, MDPI, vol. 15(10), pages 1-40, May.
  72. Richard J. Foreman & Beatriz Cañadillas & Nick Robinson, 2024. "The Atmospheric Stability Dependence of Far Wakes on the Power Output of Downstream Wind Farms," Energies, MDPI, vol. 17(2), pages 1-23, January.
  73. Ling, Ziyan & Zhao, Zhenzhou & Liu, Yige & Liu, Huiwen & Ali, Kashif & Liu, Yan & Wen, Yifan & Wang, Dingding & Li, Shijun & Su, Chunhao, 2024. "Multi-objective layout optimization for wind farms based on non-uniformly distributed turbulence and a new three-dimensional multiple wake model," Renewable Energy, Elsevier, vol. 227(C).
  74. Wu, Chutian & Yang, Xiaolei & Zhu, Yaxin, 2021. "On the design of potential turbine positions for physics-informed optimization of wind farm layout," Renewable Energy, Elsevier, vol. 164(C), pages 1108-1120.
  75. Xingxing Han & Tongguang Wang & Xiandong Ma & Chang Xu & Shifeng Fu & Jinmeng Zhang & Feifei Xue & Zhe Cheng, 2024. "A Nonlinear Wind Turbine Wake Expansion Model Considering Atmospheric Stability and Ground Effects," Energies, MDPI, vol. 17(17), pages 1-24, September.
  76. Beatriz Cañadillas & Richard Foreman & Gerald Steinfeld & Nick Robinson, 2023. "Cumulative Interactions between the Global Blockage and Wake Effects as Observed by an Engineering Model and Large-Eddy Simulations," Energies, MDPI, vol. 16(7), pages 1-24, March.
  77. Zhang, Ziyu & Huang, Peng & Bitsuamlak, Girma & Cao, Shuyang, 2024. "Large-eddy simulation of upwind-hill effects on wind-turbine wakes and power performance," Energy, Elsevier, vol. 294(C).
  78. Dara Vahidi & Fernando Porté-Agel, 2024. "Potential of Wake Scaling Techniques for Vertical-Axis Wind Turbine Wake Prediction," Energies, MDPI, vol. 17(17), pages 1-11, September.
  79. Jian Teng & Corey D. Markfort, 2020. "A Calibration Procedure for an Analytical Wake Model Using Wind Farm Operational Data," Energies, MDPI, vol. 13(14), pages 1-19, July.
  80. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
  81. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
  82. Li, Siyi & Robert, Arnaud & Faisal, A. Aldo & Piggott, Matthew D., 2024. "Learning to optimise wind farms with graph transformers," Applied Energy, Elsevier, vol. 359(C).
  83. Jaime Liew & Kirby S. Heck & Michael F. Howland, 2024. "Unified momentum model for rotor aerodynamics across operating regimes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  84. Masoudi, Seiied Mohsen & Baneshi, Mehdi, 2022. "Layout optimization of a wind farm considering grids of various resolutions, wake effect, and realistic wind speed and wind direction data: A techno-economic assessment," Energy, Elsevier, vol. 244(PB).
  85. Feng, Dachuan & Li, Larry K.B. & Gupta, Vikrant & Wan, Minping, 2022. "Componentwise influence of upstream turbulence on the far-wake dynamics of wind turbines," Renewable Energy, Elsevier, vol. 200(C), pages 1081-1091.
  86. Zhou, Huanyu & Qiu, Yingning & Feng, Yanhui & Liu, Jing, 2022. "Power prediction of wind turbine in the wake using hybrid physical process and machine learning models," Renewable Energy, Elsevier, vol. 198(C), pages 568-586.
  87. Christian Santoni & Fotis Sotiropoulos & Ali Khosronejad, 2024. "A Comparative Analysis of Actuator-Based Turbine Structure Parametrizations for High-Fidelity Modeling of Utility-Scale Wind Turbines under Neutral Atmospheric Conditions," Energies, MDPI, vol. 17(3), pages 1-16, February.
  88. Majid Bastankhah & Fernando Porté-Agel, 2017. "A New Miniature Wind Turbine for Wind Tunnel Experiments. Part I: Design and Performance," Energies, MDPI, vol. 10(7), pages 1-19, July.
  89. Song, Jeonghwan & Kim, Taewan & You, Donghyun, 2023. "Particle swarm optimization of a wind farm layout with active control of turbine yaws," Renewable Energy, Elsevier, vol. 206(C), pages 738-747.
  90. Moss, Coleman & Maulik, Romit & Iungo, Giacomo Valerio, 2024. "Augmenting insights from wind turbine data through data-driven approaches," Applied Energy, Elsevier, vol. 376(PA).
  91. Gu, Bo & Meng, Hang & Ge, Mingwei & Zhang, Hongtao & Liu, Xinyu, 2021. "Cooperative multiagent optimization method for wind farm power delivery maximization," Energy, Elsevier, vol. 233(C).
  92. Matthias Ritter & Simone Pieralli & Martin Odening, 2017. "Neighborhood Effects in Wind Farm Performance: A Regression Approach," Energies, MDPI, vol. 10(3), pages 1-16, March.
  93. Chen, Guang & Li, Xiao-Bai & Liang, Xi-Feng, 2022. "IDDES simulation of the performance and wake dynamics of the wind turbines under different turbulent inflow conditions," Energy, Elsevier, vol. 238(PB).
  94. Mingqiu Liu & Zhichang Liang & Haixiao Liu, 2022. "Numerical Investigations of Wake Expansion in the Offshore Wind Farm Using a Large Eddy Simulation," Energies, MDPI, vol. 15(6), pages 1-19, March.
  95. Li, Qing'an & Murata, Junsuke & Endo, Masayuki & Maeda, Takao & Kamada, Yasunari, 2016. "Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (part II: Wake characteristics)," Energy, Elsevier, vol. 113(C), pages 1304-1315.
  96. Chen, Yao & Yan, Bowen & Yu, Meng & Huang, Guoqing & Qian, Guowei & Yang, Qingshan & Zhang, Kai & Mo, Ruiyu, 2025. "Wind tunnel study of wind turbine wake characteristics over two-dimensional hill considering the effects of terrain slope and turbine position," Applied Energy, Elsevier, vol. 380(C).
  97. Jia, Rui & Ge, Mingwei & Zhang, Ziliang & Li, Xintao & Du, Bowen, 2024. "A numerical simulation framework for wakes downstream of large wind farms based on equivalent roughness model," Energy, Elsevier, vol. 307(C).
  98. He, Ruiyang & Yang, Hongxing & Sun, Haiying & Gao, Xiaoxia, 2021. "A novel three-dimensional wake model based on anisotropic Gaussian distribution for wind turbine wakes," Applied Energy, Elsevier, vol. 296(C).
  99. Emmanuvel Joseph Aju & Dhanush Bhamitipadi Suresh & Yaqing Jin, 2020. "The Influence of Winglet Pitching on the Performance of a Model Wind Turbine: Aerodynamic Loads, Rotating Speed, and Wake Statistics," Energies, MDPI, vol. 13(19), pages 1-15, October.
  100. Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
  101. Abraham, Aliza & Hong, Jiarong, 2020. "Dynamic wake modulation induced by utility-scale wind turbine operation," Applied Energy, Elsevier, vol. 257(C).
  102. Zhang, Xiaofeng & Wang, Qiang & Ye, Shitong & Luo, Kun & Fan, Jianren, 2024. "Efficient layout optimization of offshore wind farm based on load surrogate model and genetic algorithm," Energy, Elsevier, vol. 309(C).
  103. Pin Lyu & Wen-Li Chen & Hui Li & Lian Shen, 2019. "A Numerical Study on the Development of Self-Similarity in a Wind Turbine Wake Using an Improved Pseudo-Spectral Large-Eddy Simulation Solver," Energies, MDPI, vol. 12(4), pages 1-24, February.
  104. Majid Bastankhah & Fernando Porté-Agel, 2017. "A New Miniature Wind Turbine for Wind Tunnel Experiments. Part II: Wake Structure and Flow Dynamics," Energies, MDPI, vol. 10(7), pages 1-19, July.
  105. Ingrid Neunaber & Michael Hölling & Martin Obligado, 2022. "Wind Tunnel Study on the Tip Speed Ratio’s Impact on a Wind Turbine Wake Development," Energies, MDPI, vol. 15(22), pages 1-15, November.
  106. Hegazy Rezk & Ahmed Fathy & Ahmed A. Zaki Diab & Mujahed Al-Dhaifallah, 2019. "The Application of Water Cycle Optimization Algorithm for Optimal Placement of Wind Turbines in Wind Farms," Energies, MDPI, vol. 12(22), pages 1-19, November.
  107. Zhang, Ziyu & Huang, Peng, 2023. "Prediction of multiple-wake velocity and wind power using a cosine-shaped wake model," Renewable Energy, Elsevier, vol. 219(P1).
  108. Duan, Guiyue & Gattari, Daniele & Porté-Agel, Fernando, 2025. "Theoretical and experimental study on power performance and wake characteristics of a floating wind turbine under pitch motion," Applied Energy, Elsevier, vol. 378(PA).
  109. Jordan, Connor & Agirre, Joseba & Angeloudis, Athanasios, 2024. "Objective representative flow field selection for tidal array layout design," Renewable Energy, Elsevier, vol. 236(C).
  110. Reddy, Sohail R., 2020. "Wind Farm Layout Optimization (WindFLO) : An advanced framework for fast wind farm analysis and optimization," Applied Energy, Elsevier, vol. 269(C).
  111. Guillem Armengol Barcos & Fernando Porté-Agel, 2023. "Enhancing Wind Farm Performance through Axial Induction and Tilt Control: Insights from Wind Tunnel Experiments," Energies, MDPI, vol. 17(1), pages 1-20, December.
  112. Jong-Hyeon Shin & Jong-Hwi Lee & Se-Myong Chang, 2019. "A Simplified Numerical Model for the Prediction of Wake Interaction in Multiple Wind Turbines," Energies, MDPI, vol. 12(21), pages 1-14, October.
  113. De-Zhi Wei & Ni-Na Wang & De-Cheng Wan, 2021. "Modelling Yawed Wind Turbine Wakes: Extension of a Gaussian-Based Wake Model," Energies, MDPI, vol. 14(15), pages 1-26, July.
  114. Guoqing Huang & Yao Chen & Ke Li & Jiangke Luo & Sai Zhang & Mingming Lv, 2024. "A Two-Step Grid–Coordinate Optimization Method for a Wind Farm with a Regular Layout Using a Genetic Algorithm," Energies, MDPI, vol. 17(13), pages 1-22, July.
  115. Xu Ning & Decheng Wan, 2019. "LES Study of Wake Meandering in Different Atmospheric Stabilities and Its Effects on Wind Turbine Aerodynamics," Sustainability, MDPI, vol. 11(24), pages 1-26, December.
  116. Hyungyu Kim & Kwansu Kim & Carlo Luigi Bottasso & Filippo Campagnolo & Insu Paek, 2018. "Wind Turbine Wake Characterization for Improvement of the Ainslie Eddy Viscosity Wake Model," Energies, MDPI, vol. 11(10), pages 1-19, October.
  117. Liu, Min & Lu, Da-Gang & Qin, Jianjun & Miao, Yi-Zhi & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2024. "Risk-informed integrated design optimization for offshore wind farm electrical systems," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
  118. Yildiz, Anil & Mern, John & Kochenderfer, Mykel J. & Howland, Michael F., 2023. "Towards sequential sensor placements on a wind farm to maximize lifetime energy and profit," Renewable Energy, Elsevier, vol. 216(C).
  119. Mohammadreza Mohammadi & Majid Bastankhah & Paul Fleming & Matthew Churchfield & Ervin Bossanyi & Lars Landberg & Renzo Ruisi, 2022. "Curled-Skewed Wakes behind Yawed Wind Turbines Subject to Veered Inflow," Energies, MDPI, vol. 15(23), pages 1-16, December.
  120. Liu, Weiqi & Shi, Jian & Chen, Hailong & Liu, Hengxu & Lin, Zi & Wang, Lingling, 2021. "Lagrangian actuator model for wind turbine wake aerodynamics," Energy, Elsevier, vol. 232(C).
  121. Purohit, Shantanu & Ng, E.Y.K. & Syed Ahmed Kabir, Ijaz Fazil, 2022. "Evaluation of three potential machine learning algorithms for predicting the velocity and turbulence intensity of a wind turbine wake," Renewable Energy, Elsevier, vol. 184(C), pages 405-420.
  122. Keane, Aidan, 2021. "Advancement of an analytical double-Gaussian full wind turbine wake model," Renewable Energy, Elsevier, vol. 171(C), pages 687-708.
  123. Li, Li & Huang, Zhi & Ge, Mingwei & Zhang, Qiying, 2022. "A novel three-dimensional analytical model of the added streamwise turbulence intensity for wind-turbine wakes," Energy, Elsevier, vol. 238(PB).
  124. Cai, Wei & Hu, Yang & Fang, Fang & Yao, Lujin & Liu, Jizhen, 2023. "Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines," Applied Energy, Elsevier, vol. 339(C).
  125. Syed Ahmed Kabir, Ijaz Fazil & Safiyullah, Ferozkhan & Ng, E.Y.K. & Tam, Vivian W.Y., 2020. "New analytical wake models based on artificial intelligence and rivalling the benchmark full-rotor CFD predictions under both uniform and ABL inflows," Energy, Elsevier, vol. 193(C).
  126. Sun, Jili & Yang, Jingqing & Jiang, Zezhong & Xu, JinFeng & Meng, Xiaofei & Feng, Xiaoguang & Si, Yulin & Zhang, Dahai, 2024. "Wake redirection control for offshore wind farm power and fatigue multi-objective optimisation based on a wind turbine load indicator," Energy, Elsevier, vol. 313(C).
  127. Harsh S. Dhiman & Dipankar Deb & Vlad Muresan & Valentina E. Balas, 2019. "Wake Management in Wind Farms: An Adaptive Control Approach," Energies, MDPI, vol. 12(7), pages 1-18, April.
  128. Guo-Wei Qian & Takeshi Ishihara, 2018. "A New Analytical Wake Model for Yawed Wind Turbines," Energies, MDPI, vol. 11(3), pages 1-24, March.
  129. Carl R. Shapiro & Genevieve M. Starke & Charles Meneveau & Dennice F. Gayme, 2019. "A Wake Modeling Paradigm for Wind Farm Design and Control," Energies, MDPI, vol. 12(15), pages 1-19, August.
  130. Wang, Longyan & Cholette, Michael E. & Zhou, Yunkai & Yuan, Jianping & Tan, Andy C.C. & Gu, Yuantong, 2018. "Effectiveness of optimized control strategy and different hub height turbines on a real wind farm optimization," Renewable Energy, Elsevier, vol. 126(C), pages 819-829.
  131. Bart Matthijs Doekemeijer & Eric Simley & Paul Fleming, 2022. "Comparison of the Gaussian Wind Farm Model with Historical Data of Three Offshore Wind Farms," Energies, MDPI, vol. 15(6), pages 1-23, March.
  132. Kaldellis, John K. & Triantafyllou, Panagiotis & Stinis, Panagiotis, 2021. "Critical evaluation of Wind Turbines’ analytical wake models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  133. Yang, Haoze & Ge, Mingwei & Gu, Bo & Du, Bowen & Liu, Yongqian, 2022. "The effect of swell on marine atmospheric boundary layer and the operation of an offshore wind turbine," Energy, Elsevier, vol. 244(PB).
  134. Meng, Hang & Li, Li & Zhang, Jinhua, 2020. "A preliminary numerical study of the wake effects on the fatigue load for wind farm based on elastic actuator line model," Renewable Energy, Elsevier, vol. 162(C), pages 788-801.
  135. Murcia, Juan Pablo & Koivisto, Matti Juhani & Luzia, Graziela & Olsen, Bjarke T. & Hahmann, Andrea N. & Sørensen, Poul Ejnar & Als, Magnus, 2022. "Validation of European-scale simulated wind speed and wind generation time series," Applied Energy, Elsevier, vol. 305(C).
  136. Kadoche, Elie & Gourvénec, Sébastien & Pallud, Maxime & Levent, Tanguy, 2023. "MARLYC: Multi-Agent Reinforcement Learning Yaw Control," Renewable Energy, Elsevier, vol. 217(C).
  137. Luo, Zhaohui & Wang, Longyan & Xu, Jian & Wang, Zilu & Yuan, Jianping & Tan, Andy C.C., 2024. "A reduced order modeling-based machine learning approach for wind turbine wake flow estimation from sparse sensor measurements," Energy, Elsevier, vol. 294(C).
  138. Kim, Taewan & Song, Jeonghwan & You, Donghyun, 2024. "Optimization of a wind farm layout to mitigate the wind power intermittency," Applied Energy, Elsevier, vol. 367(C).
  139. Xin Liu & Lailong Li & Shaoping Shi & Xinming Chen & Songhua Wu & Wenxin Lao, 2021. "Three-Dimensional LiDAR Wake Measurements in an Offshore Wind Farm and Comparison with Gaussian and AL Wake Models," Energies, MDPI, vol. 14(24), pages 1-15, December.
  140. Wu, Yan & Xia, Tianqi & Wang, Yufei & Zhang, Haoran & Feng, Xiao & Song, Xuan & Shibasaki, Ryosuke, 2022. "A synchronization methodology for 3D offshore wind farm layout optimization with multi-type wind turbines and obstacle-avoiding cable network," Renewable Energy, Elsevier, vol. 185(C), pages 302-320.
  141. Ge, Mingwei & Wu, Ying & Liu, Yongqian & Yang, Xiang I.A., 2019. "A two-dimensional Jensen model with a Gaussian-shaped velocity deficit," Renewable Energy, Elsevier, vol. 141(C), pages 46-56.
  142. Tong Shu & Young Hoon Joo, 2023. "Non-Centralised Balance Dispatch Strategy in Waked Wind Farms through a Graph Sparsification Partitioning Approach," Energies, MDPI, vol. 16(20), pages 1-21, October.
  143. Ritter, Matthias & Pieralli, Simone & Odening, Martin, 2016. "Neighborhood effects in wind farm performance: An econometric approach," SFB 649 Discussion Papers 2016-012, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  144. Mojtaba Kheiri & Samson Victor & Sina Rangriz & Mher M. Karakouzian & Frederic Bourgault, 2022. "Aerodynamic Performance and Wake Flow of Crosswind Kite Power Systems," Energies, MDPI, vol. 15(7), pages 1-25, March.
  145. Kirchner-Bossi, Nicolas & Porté-Agel, Fernando, 2024. "Wind farm power density optimization according to the area size using a novel self-adaptive genetic algorithm," Renewable Energy, Elsevier, vol. 220(C).
  146. Zhu, Xiaoxun & Chen, Yao & Xu, Shinai & Zhang, Shaohai & Gao, Xiaoxia & Sun, Haiying & Wang, Yu & Zhao, Fei & Lv, Tiancheng, 2023. "Three-dimensional non-uniform full wake characteristics for yawed wind turbine with LiDAR-based experimental verification," Energy, Elsevier, vol. 270(C).
  147. Ingrid Neunaber & Michael Hölling & Richard J. A. M. Stevens & Gerard Schepers & Joachim Peinke, 2020. "Distinct Turbulent Regions in the Wake of a Wind Turbine and Their Inflow-Dependent Locations: The Creation of a Wake Map," Energies, MDPI, vol. 13(20), pages 1-20, October.
  148. Wang, Tengyuan & Cai, Chang & Liu, Junbo & Peng, Chaoyi & Wang, Yibo & Sun, Xiangyu & Zhong, Xiaohui & Zhang, Jingjing & Li, Qingan, 2024. "Wake characteristics and vortex structure evolution of floating offshore wind turbine under surge motion," Energy, Elsevier, vol. 302(C).
  149. Fan, Xiantao & Ge, Mingwei & Tan, Wei & Li, Qi, 2021. "Impacts of coexisting buildings and trees on the performance of rooftop wind turbines: An idealized numerical study," Renewable Energy, Elsevier, vol. 177(C), pages 164-180.
  150. Adam Stock & Matthew Cole & Mathieu Kervyn & Fulin Fan & James Ferguson & Anup Nambiar & Benjamin Pepper & Michael Smailes & David Campos-Gaona, 2023. "Wind Farm Control for Improved Battery Lifetime in Green Hydrogen Systems without a Grid Connection," Energies, MDPI, vol. 16(13), pages 1-19, July.
  151. Zhang, Huan & Ge, Mingwei & Liu, Yongqian & Yang, Xiang I.A., 2021. "A new coupled model for the equivalent roughness heights of wind farms," Renewable Energy, Elsevier, vol. 171(C), pages 34-46.
  152. Wen, Jiahao & Zhou, Lei & Zhang, Hongfu, 2023. "Mode interpretation of blade number effects on wake dynamics of small-scale horizontal axis wind turbine," Energy, Elsevier, vol. 263(PA).
  153. Brogna, Roberto & Feng, Ju & Sørensen, Jens Nørkær & Shen, Wen Zhong & Porté-Agel, Fernando, 2020. "A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain," Applied Energy, Elsevier, vol. 259(C).
  154. Zhang, Jincheng & Zhao, Xiaowei, 2020. "A novel dynamic wind farm wake model based on deep learning," Applied Energy, Elsevier, vol. 277(C).
  155. Parada, Leandro & Herrera, Carlos & Flores, Paulo & Parada, Victor, 2017. "Wind farm layout optimization using a Gaussian-based wake model," Renewable Energy, Elsevier, vol. 107(C), pages 531-541.
  156. Zhang, Yi & Li, Zhaobin & Liu, Xiaohao & Sotiropoulos, Fotis & Yang, Xiaolei, 2023. "Turbulence in waked wind turbine wakes: Similarity and empirical formulae," Renewable Energy, Elsevier, vol. 209(C), pages 27-41.
  157. Lam, Wei-Haur & Chen, Long & Hashim, Roslan, 2015. "Analytical wake model of tidal current turbine," Energy, Elsevier, vol. 79(C), pages 512-521.
  158. Butterwick, Thomas & Kheiri, Ahmed & Lulli, Guglielmo & Gromicho, Joaquim & Kreeft, Jasper, 2023. "Application of selection hyper-heuristics to the simultaneous optimisation of turbines and cabling within an offshore windfarm," Renewable Energy, Elsevier, vol. 208(C), pages 1-16.
  159. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
  160. Wang, Tengyuan & Cai, Chang & Wang, Xinbao & Wang, Zekun & Chen, Yewen & Song, Juanjuan & Xu, Jianzhong & Zhang, Yuning & Li, Qingan, 2023. "A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow," Energy, Elsevier, vol. 271(C).
  161. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  162. Wang, Longyan & Luo, Wei & Xu, Jian & Xie, Junhang & Luo, Zhaohui & Tan, Andy C.C., 2022. "Comparative study of decentralized instantaneous and wind-interval-based controls for in-line two scale wind turbines," Renewable Energy, Elsevier, vol. 189(C), pages 1218-1233.
  163. Huanqiang, Zhang & Xiaoxia, Gao & Hongkun, Lu & Qiansheng, Zhao & Xiaoxun, Zhu & Yu, Wang & Fei, Zhao, 2024. "Investigation of a new 3D wake model of offshore floating wind turbines subjected to the coupling effects of wind and wave," Applied Energy, Elsevier, vol. 365(C).
  164. Gao, Xiaoxia & Li, Bingbing & Wang, Tengyuan & Sun, Haiying & Yang, Hongxing & Li, Yonghua & Wang, Yu & Zhao, Fei, 2020. "Investigation and validation of 3D wake model for horizontal-axis wind turbines based on filed measurements," Applied Energy, Elsevier, vol. 260(C).
  165. Tao, Siyu & Xu, Qingshan & Feijóo, Andrés & Zheng, Gang & Zhou, Jiemin, 2020. "Wind farm layout optimization with a three-dimensional Gaussian wake model," Renewable Energy, Elsevier, vol. 159(C), pages 553-569.
  166. Cheng, Yu & Zhang, Mingming & Zhang, Ziliang & Xu, Jianzhong, 2019. "A new analytical model for wind turbine wakes based on Monin-Obukhov similarity theory," Applied Energy, Elsevier, vol. 239(C), pages 96-106.
  167. Tu, Yu & Chen, Yaoran & Zhang, Kai & He, Ruiyang & Han, Zhaolong & Zhou, Dai, 2025. "A multi-fidelity framework for power prediction of wind farm under yaw misalignment," Applied Energy, Elsevier, vol. 377(PC).
  168. Michael F. Howland & John O. Dabiri, 2020. "Influence of Wake Model Superposition and Secondary Steering on Model-Based Wake Steering Control with SCADA Data Assimilation," Energies, MDPI, vol. 14(1), pages 1-20, December.
  169. Li, Qing’an & Maeda, Takao & Kamada, Yasunari & Mori, Naoya, 2017. "Investigation of wake effects on a Horizontal Axis Wind Turbine in field experiments (Part I: Horizontal axis direction)," Energy, Elsevier, vol. 134(C), pages 482-492.
  170. Dar, Arslan Salim & Porté-Agel, Fernando, 2022. "Wind turbine wakes on escarpments: A wind-tunnel study," Renewable Energy, Elsevier, vol. 181(C), pages 1258-1275.
  171. Ebdon, Tim & Allmark, Matthew J. & O’Doherty, Daphne M. & Mason-Jones, Allan & O’Doherty, Tim & Germain, Gregory & Gaurier, Benoit, 2021. "The impact of turbulence and turbine operating condition on the wakes of tidal turbines," Renewable Energy, Elsevier, vol. 165(P2), pages 96-116.
  172. Tian, Sheng & Liu, Yongqian & Li, Baoliang & Chi, Yongning & Tian, Xinshou, 2024. "An optimal operation strategy of wind farm for frequency regulation reserve considering wake effects," Energy, Elsevier, vol. 304(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.