IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p1964-d766525.html
   My bibliography  Save this article

Comparison of the Gaussian Wind Farm Model with Historical Data of Three Offshore Wind Farms

Author

Listed:
  • Bart Matthijs Doekemeijer

    (National Wind Technology Center, National Renewable Energy Laboratory, 19001 W 119th Ave, Arvada, CO 80007, USA)

  • Eric Simley

    (National Wind Technology Center, National Renewable Energy Laboratory, 19001 W 119th Ave, Arvada, CO 80007, USA)

  • Paul Fleming

    (National Wind Technology Center, National Renewable Energy Laboratory, 19001 W 119th Ave, Arvada, CO 80007, USA)

Abstract

A recent expert elicitation showed that model validation remains one of the largest barriers for commercial wind farm control deployment. The Gaussian-shaped wake deficit model has grown in popularity in wind farm field experiments, yet its validation for larger farms and throughout annual operation remains limited. This article addresses this scientific gap, providing a model comparison of the Gaussian wind farm model with historical data of three offshore wind farms. The energy ratio is used to quantify the model’s accuracy. We assume a fixed turbulence intensity of I ∞ = 6 % and a standard deviation on the inflow wind direction of σ w d = 3 ° in our Gaussian model. First, we demonstrate the non-uniqueness issue of I ∞ and σ w d , which display a waterbed effect when considering the energy ratios. Second, we show excellent agreement between the Gaussian model and historical data for most wind directions in the Offshore Windpark Egmond aan Zee (OWEZ) and Westermost Rough wind farms (36 and 35 wind turbines, respectively) and wind turbines on the outer edges of the Anholt wind farm (110 turbines). Turbines centrally positioned in the Anholt wind farm show larger model discrepancies, likely due to deep-array effects that are not captured in the model. A second source of discrepancy is hypothesized to be inflow heterogeneity. In future work, the Gaussian wind farm model will be adapted to address those weaknesses.

Suggested Citation

  • Bart Matthijs Doekemeijer & Eric Simley & Paul Fleming, 2022. "Comparison of the Gaussian Wind Farm Model with Historical Data of Three Offshore Wind Farms," Energies, MDPI, vol. 15(6), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:1964-:d:766525
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/1964/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/1964/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Doekemeijer, Bart M. & van der Hoek, Daan & van Wingerden, Jan-Willem, 2020. "Closed-loop model-based wind farm control using FLORIS under time-varying inflow conditions," Renewable Energy, Elsevier, vol. 156(C), pages 719-730.
    2. van der Hoek, Daan & Kanev, Stoyan & Allin, Julian & Bieniek, David & Mittelmeier, Niko, 2019. "Effects of axial induction control on wind farm energy production - A field test," Renewable Energy, Elsevier, vol. 140(C), pages 994-1003.
    3. Archer, Cristina L. & Vasel-Be-Hagh, Ahmadreza & Yan, Chi & Wu, Sicheng & Pan, Yang & Brodie, Joseph F. & Maguire, A. Eoghan, 2018. "Review and evaluation of wake loss models for wind energy applications," Applied Energy, Elsevier, vol. 226(C), pages 1187-1207.
    4. Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rebecca J. Barthelmie & Gunner C. Larsen & Sara C. Pryor, 2023. "Modeling Annual Electricity Production and Levelized Cost of Energy from the US East Coast Offshore Wind Energy Lease Areas," Energies, MDPI, vol. 16(12), pages 1-29, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van den Broek, Maarten J. & De Tavernier, Delphine & Sanderse, Benjamin & van Wingerden, Jan-Willem, 2022. "Adjoint optimisation for wind farm flow control with a free-vortex wake model," Renewable Energy, Elsevier, vol. 201(P1), pages 752-765.
    2. Michael F. Howland & John O. Dabiri, 2020. "Influence of Wake Model Superposition and Secondary Steering on Model-Based Wake Steering Control with SCADA Data Assimilation," Energies, MDPI, vol. 14(1), pages 1-20, December.
    3. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    4. Kyoungboo Yang, 2020. "Determining an Appropriate Parameter of Analytical Wake Models for Energy Capture and Layout Optimization on Wind Farms," Energies, MDPI, vol. 13(3), pages 1-17, February.
    5. Gu, Bo & Meng, Hang & Ge, Mingwei & Zhang, Hongtao & Liu, Xinyu, 2021. "Cooperative multiagent optimization method for wind farm power delivery maximization," Energy, Elsevier, vol. 233(C).
    6. Cai, Wei & Hu, Yang & Fang, Fang & Yao, Lujin & Liu, Jizhen, 2023. "Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines," Applied Energy, Elsevier, vol. 339(C).
    7. Wang, Tengyuan & Cai, Chang & Wang, Xinbao & Wang, Zekun & Chen, Yewen & Song, Juanjuan & Xu, Jianzhong & Zhang, Yuning & Li, Qingan, 2023. "A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow," Energy, Elsevier, vol. 271(C).
    8. Emmanuvel Joseph Aju & Dhanush Bhamitipadi Suresh & Yaqing Jin, 2020. "The Influence of Winglet Pitching on the Performance of a Model Wind Turbine: Aerodynamic Loads, Rotating Speed, and Wake Statistics," Energies, MDPI, vol. 13(19), pages 1-15, October.
    9. Wu, Yan & Xia, Tianqi & Wang, Yufei & Zhang, Haoran & Feng, Xiao & Song, Xuan & Shibasaki, Ryosuke, 2022. "A synchronization methodology for 3D offshore wind farm layout optimization with multi-type wind turbines and obstacle-avoiding cable network," Renewable Energy, Elsevier, vol. 185(C), pages 302-320.
    10. Brogna, Roberto & Feng, Ju & Sørensen, Jens Nørkær & Shen, Wen Zhong & Porté-Agel, Fernando, 2020. "A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain," Applied Energy, Elsevier, vol. 259(C).
    11. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions," Applied Energy, Elsevier, vol. 242(C), pages 1383-1395.
    12. Dhiman, Harsh S. & Deb, Dipankar & Foley, Aoife M., 2020. "Bilateral Gaussian Wake Model Formulation for Wind Farms: A Forecasting based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    13. Sun, Jili & Chen, Zheng & Yu, Hao & Gao, Shan & Wang, Bin & Ying, You & Sun, Yong & Qian, Peng & Zhang, Dahai & Si, Yulin, 2022. "Quantitative evaluation of yaw-misalignment and aerodynamic wake induced fatigue loads of offshore Wind turbines," Renewable Energy, Elsevier, vol. 199(C), pages 71-86.
    14. Dhiman, Harsh S. & Deb, Dipankar & Foley, Aoife M., 2020. "Lidar assisted wake redirection in wind farms: A data driven approach," Renewable Energy, Elsevier, vol. 152(C), pages 484-493.
    15. Javier Serrano González & Bruno López & Martín Draper, 2021. "Optimal Pitch Angle Strategy for Energy Maximization in Offshore Wind Farms Considering Gaussian Wake Model," Energies, MDPI, vol. 14(4), pages 1-18, February.
    16. Jian Teng & Corey D. Markfort, 2020. "A Calibration Procedure for an Analytical Wake Model Using Wind Farm Operational Data," Energies, MDPI, vol. 13(14), pages 1-19, July.
    17. Meng, Hang & Li, Li & Zhang, Jinhua, 2020. "A preliminary numerical study of the wake effects on the fatigue load for wind farm based on elastic actuator line model," Renewable Energy, Elsevier, vol. 162(C), pages 788-801.
    18. Gao, Xiaoxia & Li, Bingbing & Wang, Tengyuan & Sun, Haiying & Yang, Hongxing & Li, Yonghua & Wang, Yu & Zhao, Fei, 2020. "Investigation and validation of 3D wake model for horizontal-axis wind turbines based on filed measurements," Applied Energy, Elsevier, vol. 260(C).
    19. Cheng, Yu & Zhang, Mingming & Zhang, Ziliang & Xu, Jianzhong, 2019. "A new analytical model for wind turbine wakes based on Monin-Obukhov similarity theory," Applied Energy, Elsevier, vol. 239(C), pages 96-106.
    20. Sadek, Zein & Scott, Ryan & Hamilton, Nicholas & Cal, Raúl Bayoán, 2023. "A three-dimensional, analytical wind turbine wake model: Flow acceleration, empirical correlations, and continuity," Renewable Energy, Elsevier, vol. 209(C), pages 298-309.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:1964-:d:766525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.