IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v216y2025ics1364032125002783.html
   My bibliography  Save this article

Data-driven wind farm flow control and challenges towards field implementation: A review

Author

Listed:
  • Göçmen, Tuhfe
  • Liew, Jaime
  • Kadoche, Elie
  • Dimitrov, Nikolay
  • Riva, Riccardo
  • Andersen, Søren Juhl
  • Lio, Alan W.H.
  • Quick, Julian
  • Réthoré, Pierre-Elouan
  • Dykes, Katherine

Abstract

Data-driven wind farm flow control (WFFC) is an innovative approach that leverages the collected data and advanced analytics to enhance the performance of wind turbines within wind farms. Its significance lies in its ability to adapt to changing wind and turbine conditions and improve operations, boosting energy yield, extending turbine/component lifetime, and potentially reducing socio-environmental impact and costs, thus supporting the viability and sustainability of wind energy as a renewable power source. This review explores the dynamic field of data-driven WFFC and its challenges towards practical implementation. Building on top of traditional wind farm modelling and model-based control, it details the virtues and limitations of these methods while introducing the concept of data-informed or data-driven flow models that harness data to augment predictive accuracy and control strategies. The analysis then covers the methodologies for power and load surrogates, elucidating the pivotal role of surrogate modelling in enhancing WFFC, and showcasing its value in decision-making and energy optimisation. Furthermore, the growing field of reinforcement learning (RL) is highlighted, showcasing its adaptive potential to revolutionise wind farm control through learning from past interactions. The investigation concludes by identifying key challenges impeding the practical deployment of data-driven WFFC, including data quality concerns, cybersecurity risks, and limitations of the current algorithms. In summary, this comprehensive review presents the ongoing development of data-driven WFFC, emphasising the synergy between traditional methods, surrogate modelling, RL, and the critical challenges to be addressed for successful integration of these methodologies in real-world wind farm operations.

Suggested Citation

  • Göçmen, Tuhfe & Liew, Jaime & Kadoche, Elie & Dimitrov, Nikolay & Riva, Riccardo & Andersen, Søren Juhl & Lio, Alan W.H. & Quick, Julian & Réthoré, Pierre-Elouan & Dykes, Katherine, 2025. "Data-driven wind farm flow control and challenges towards field implementation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125002783
    DOI: 10.1016/j.rser.2025.115605
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125002783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115605?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Murcia, Juan Pablo & Réthoré, Pierre-Elouan & Dimitrov, Nikolay & Natarajan, Anand & Sørensen, John Dalsgaard & Graf, Peter & Kim, Taeseong, 2018. "Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates," Renewable Energy, Elsevier, vol. 119(C), pages 910-922.
    2. Doekemeijer, Bart M. & van der Hoek, Daan & van Wingerden, Jan-Willem, 2020. "Closed-loop model-based wind farm control using FLORIS under time-varying inflow conditions," Renewable Energy, Elsevier, vol. 156(C), pages 719-730.
    3. Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
    4. Slot, René M.M. & Sørensen, John D. & Sudret, Bruno & Svenningsen, Lasse & Thøgersen, Morten L., 2020. "Surrogate model uncertainty in wind turbine reliability assessment," Renewable Energy, Elsevier, vol. 151(C), pages 1150-1162.
    5. David Bastine & Lukas Vollmer & Matthias Wächter & Joachim Peinke, 2018. "Stochastic Wake Modelling Based on POD Analysis," Energies, MDPI, vol. 11(3), pages 1-29, March.
    6. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    7. Iker Elorza & Carlos Calleja & Aron Pujana-Arrese, 2019. "On Wind Turbine Power Delta Control," Energies, MDPI, vol. 12(12), pages 1-25, June.
    8. Kadoche, Elie & Gourvénec, Sébastien & Pallud, Maxime & Levent, Tanguy, 2023. "MARLYC: Multi-Agent Reinforcement Learning Yaw Control," Renewable Energy, Elsevier, vol. 217(C).
    9. Wenting Chen & Hang Liu & Yonggang Lin & Wei Li & Yong Sun & Di Zhang, 2020. "LSTM-NN Yaw Control of Wind Turbines Based on Upstream Wind Information," Energies, MDPI, vol. 13(6), pages 1-23, March.
    10. John Thomas Lyons & Tuhfe Göçmen, 2021. "Applied Machine Learning Techniques for Performance Analysis in Large Wind Farms," Energies, MDPI, vol. 14(13), pages 1-28, June.
    11. van der Hoek, Daan & Kanev, Stoyan & Allin, Julian & Bieniek, David & Mittelmeier, Niko, 2019. "Effects of axial induction control on wind farm energy production - A field test," Renewable Energy, Elsevier, vol. 140(C), pages 994-1003.
    12. De Cillis, Giovanni & Semeraro, Onofrio & Leonardi, Stefano & De Palma, Pietro & Cherubini, Stefania, 2022. "Dynamic-mode-decomposition of the wake of the NREL-5MW wind turbine impinged by a laminar inflow," Renewable Energy, Elsevier, vol. 199(C), pages 1-10.
    13. Purohit, Shantanu & Ng, E.Y.K. & Syed Ahmed Kabir, Ijaz Fazil, 2022. "Evaluation of three potential machine learning algorithms for predicting the velocity and turbulence intensity of a wind turbine wake," Renewable Energy, Elsevier, vol. 184(C), pages 405-420.
    14. Park, Junyoung & Park, Jinkyoo, 2019. "Physics-induced graph neural network: An application to wind-farm power estimation," Energy, Elsevier, vol. 187(C).
    15. Dong, Hongyang & Zhang, Jincheng & Zhao, Xiaowei, 2021. "Intelligent wind farm control via deep reinforcement learning and high-fidelity simulations," Applied Energy, Elsevier, vol. 292(C).
    16. Maarten T. van Beek & Axelle Viré & Søren J. Andersen, 2021. "Sensitivity and Uncertainty of the FLORIS Model Applied on the Lillgrund Wind Farm," Energies, MDPI, vol. 14(5), pages 1-21, February.
    17. Wu, Yueqi & Ma, Xiandong, 2022. "A hybrid LSTM-KLD approach to condition monitoring of operational wind turbines," Renewable Energy, Elsevier, vol. 181(C), pages 554-566.
    18. Bottasso, C.L. & Cacciola, S. & Schreiber, J., 2018. "Local wind speed estimation, with application to wake impingement detection," Renewable Energy, Elsevier, vol. 116(PA), pages 155-168.
    19. Tawn, R. & Browell, J., 2022. "A review of very short-term wind and solar power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    20. Göçmen, Tuhfe & Laan, Paul van der & Réthoré, Pierre-Elouan & Diaz, Alfredo Peña & Larsen, Gunner Chr. & Ott, Søren, 2016. "Wind turbine wake models developed at the technical university of Denmark: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 752-769.
    21. Morrison, Rory & Liu, Xiaolei & Lin, Zi, 2022. "Anomaly detection in wind turbine SCADA data for power curve cleaning," Renewable Energy, Elsevier, vol. 184(C), pages 473-486.
    22. Michael F. Howland & Jesús Bas Quesada & Juan José Pena Martínez & Felipe Palou Larrañaga & Neeraj Yadav & Jasvipul S. Chawla & Varun Sivaram & John O. Dabiri, 2022. "Collective wind farm operation based on a predictive model increases utility-scale energy production," Nature Energy, Nature, vol. 7(9), pages 818-827, September.
    23. Aitor Saenz-Aguirre & Ekaitz Zulueta & Unai Fernandez-Gamiz & Javier Lozano & Jose Manuel Lopez-Guede, 2019. "Artificial Neural Network Based Reinforcement Learning for Wind Turbine Yaw Control," Energies, MDPI, vol. 12(3), pages 1-17, January.
    24. Lio, Wai Hou & Larsen, Gunner Chr. & Thorsen, Gunhild R., 2021. "Dynamic wake tracking using a cost-effective LiDAR and Kalman filtering: Design, simulation and full-scale validation," Renewable Energy, Elsevier, vol. 172(C), pages 1073-1086.
    25. Yin, Hao & Ou, Zuhong & Fu, Jiajin & Cai, Yongfeng & Chen, Shun & Meng, Anbo, 2021. "A novel transfer learning approach for wind power prediction based on a serio-parallel deep learning architecture," Energy, Elsevier, vol. 234(C).
    26. Marcus Becker & Dries Allaerts & Jan-Willem van Wingerden, 2022. "Ensemble-Based Flow Field Estimation Using the Dynamic Wind Farm Model FLORIDyn," Energies, MDPI, vol. 15(22), pages 1-23, November.
    27. Zhou, Lei & Wen, Jiahao & Wang, Zhaokun & Deng, Pengru & Zhang, Hongfu, 2023. "High-fidelity wind turbine wake velocity prediction by surrogate model based on d-POD and LSTM," Energy, Elsevier, vol. 275(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Rui & Zhang, Jincheng & Zhao, Xiaowei, 2022. "Dynamic wind farm wake modeling based on a Bilateral Convolutional Neural Network and high-fidelity LES data," Energy, Elsevier, vol. 258(C).
    2. Yang, Shanghui & Deng, Xiaowei & Dai, Feng & Yang, Kun & Wang, Qiulei & Dong, Zhikun, 2025. "Wind farm cooperative control under unsteady inflow conditions considering dynamic wake interactions," Renewable Energy, Elsevier, vol. 244(C).
    3. Pawar, Suraj & Sharma, Ashesh & Vijayakumar, Ganesh & Bay, Chrstopher J. & Yellapantula, Shashank & San, Omer, 2022. "Towards multi-fidelity deep learning of wind turbine wakes," Renewable Energy, Elsevier, vol. 200(C), pages 867-879.
    4. Thapa, Mishal & Missoum, Samy, 2022. "Uncertainty quantification and global sensitivity analysis of composite wind turbine blades," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    6. Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
    7. Balakrishnan, Raj Kiran & Son, Eunkuk & Hur, Sung-ho, 2024. "Optimization of wind farm power output using wake redirection control," Renewable Energy, Elsevier, vol. 235(C).
    8. Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
    9. Yang, Shanghui & Deng, Xiaowei & Ti, Zilong & Yan, Bowen & Yang, Qingshan, 2022. "Cooperative yaw control of wind farm using a double-layer machine learning framework," Renewable Energy, Elsevier, vol. 193(C), pages 519-537.
    10. Huanqiang, Zhang & Xiaoxia, Gao & Hongkun, Lu & Qiansheng, Zhao & Xiaoxun, Zhu & Yu, Wang & Fei, Zhao, 2024. "Investigation of a new 3D wake model of offshore floating wind turbines subjected to the coupling effects of wind and wave," Applied Energy, Elsevier, vol. 365(C).
    11. Cheng, Biyi & Yao, Yingxue, 2023. "Machine learning based surrogate model to analyze wind tunnel experiment data of Darrieus wind turbines," Energy, Elsevier, vol. 278(PA).
    12. van den Broek, Maarten J. & De Tavernier, Delphine & Sanderse, Benjamin & van Wingerden, Jan-Willem, 2022. "Adjoint optimisation for wind farm flow control with a free-vortex wake model," Renewable Energy, Elsevier, vol. 201(P1), pages 752-765.
    13. Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
    14. Yang, Mao & Huang, Yutong & Xu, Chuanyu & Liu, Chenyu & Dai, Bozhi, 2025. "Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations," Applied Energy, Elsevier, vol. 377(PC).
    15. Wang, Yu & Wei, Shanbi & Yang, Wei & Chai, Yi, 2023. "Adaptive economic predictive control for offshore wind farm active yaw considering generation uncertainty," Applied Energy, Elsevier, vol. 351(C).
    16. Yang, Shanghui & Deng, Xiaowei & Yang, Kun, 2024. "Machine-learning-based wind farm optimization through layout design and yaw control," Renewable Energy, Elsevier, vol. 224(C).
    17. Hou, Guolian & Wang, Junjie & Fan, Yuzhen & Zhang, Jianhua & Huang, Congzhi, 2024. "A novel wind power deterministic and interval prediction framework based on the critic weight method, improved northern goshawk optimization, and kernel density estimation," Renewable Energy, Elsevier, vol. 226(C).
    18. Kim, Taewan & Kim, Changwook & Song, Jeonghwan & You, Donghyun, 2024. "Optimal control of a wind farm in time-varying wind using deep reinforcement learning," Energy, Elsevier, vol. 303(C).
    19. Zhang, Xiaodong & Dimitrov, Nikolay, 2024. "Variable importance analysis of wind turbine extreme responses with Shapley value explanation," Renewable Energy, Elsevier, vol. 232(C).
    20. Zhou, Lei & Wen, Jiahao & Wang, Zhaokun & Deng, Pengru & Zhang, Hongfu, 2023. "High-fidelity wind turbine wake velocity prediction by surrogate model based on d-POD and LSTM," Energy, Elsevier, vol. 275(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125002783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.