Author
Listed:
- Göçmen, Tuhfe
- Liew, Jaime
- Kadoche, Elie
- Dimitrov, Nikolay
- Riva, Riccardo
- Andersen, Søren Juhl
- Lio, Alan W.H.
- Quick, Julian
- Réthoré, Pierre-Elouan
- Dykes, Katherine
Abstract
Data-driven wind farm flow control (WFFC) is an innovative approach that leverages the collected data and advanced analytics to enhance the performance of wind turbines within wind farms. Its significance lies in its ability to adapt to changing wind and turbine conditions and improve operations, boosting energy yield, extending turbine/component lifetime, and potentially reducing socio-environmental impact and costs, thus supporting the viability and sustainability of wind energy as a renewable power source. This review explores the dynamic field of data-driven WFFC and its challenges towards practical implementation. Building on top of traditional wind farm modelling and model-based control, it details the virtues and limitations of these methods while introducing the concept of data-informed or data-driven flow models that harness data to augment predictive accuracy and control strategies. The analysis then covers the methodologies for power and load surrogates, elucidating the pivotal role of surrogate modelling in enhancing WFFC, and showcasing its value in decision-making and energy optimisation. Furthermore, the growing field of reinforcement learning (RL) is highlighted, showcasing its adaptive potential to revolutionise wind farm control through learning from past interactions. The investigation concludes by identifying key challenges impeding the practical deployment of data-driven WFFC, including data quality concerns, cybersecurity risks, and limitations of the current algorithms. In summary, this comprehensive review presents the ongoing development of data-driven WFFC, emphasising the synergy between traditional methods, surrogate modelling, RL, and the critical challenges to be addressed for successful integration of these methodologies in real-world wind farm operations.
Suggested Citation
Göçmen, Tuhfe & Liew, Jaime & Kadoche, Elie & Dimitrov, Nikolay & Riva, Riccardo & Andersen, Søren Juhl & Lio, Alan W.H. & Quick, Julian & Réthoré, Pierre-Elouan & Dykes, Katherine, 2025.
"Data-driven wind farm flow control and challenges towards field implementation: A review,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
Handle:
RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125002783
DOI: 10.1016/j.rser.2025.115605
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125002783. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.