IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v303y2024ics0360544224017237.html
   My bibliography  Save this article

Optimal control of a wind farm in time-varying wind using deep reinforcement learning

Author

Listed:
  • Kim, Taewan
  • Kim, Changwook
  • Song, Jeonghwan
  • You, Donghyun

Abstract

A deep-reinforcement-learning (DRL) based control method to take the advantage of complex wake interactions in a wind farm is developed. Although the wind over a wind farm is changing, steady wind has been assumed in the most conventional methods for wind farm control. Under unsteady wind, the generated power of a wind farm becomes stochastic due to intermittent and fluctuating wind. To tackle the difficulty, a DRL-based method with which the pitch and yaw angles of wind turbines in a wind farm are strategically controlled is developed. Time-histories of the past wind and the predicted future wind are both utilized to identify the relation between the generated power and control. The present neural network is trained and validated using an experimental wind farm. A multi-fan wind tunnel is developed to generate unsteady wind for experiments with miniature wind farms, where the improvement in the generated power by the present DRL-based control method is demonstrated.

Suggested Citation

  • Kim, Taewan & Kim, Changwook & Song, Jeonghwan & You, Donghyun, 2024. "Optimal control of a wind farm in time-varying wind using deep reinforcement learning," Energy, Elsevier, vol. 303(C).
  • Handle: RePEc:eee:energy:v:303:y:2024:i:c:s0360544224017237
    DOI: 10.1016/j.energy.2024.131950
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224017237
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131950?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:303:y:2024:i:c:s0360544224017237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.