Optimal control of a wind farm in time-varying wind using deep reinforcement learning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.131950
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Song, Jeonghwan & Kim, Taewan & You, Donghyun, 2023. "Particle swarm optimization of a wind farm layout with active control of turbine yaws," Renewable Energy, Elsevier, vol. 206(C), pages 738-747.
- Doekemeijer, Bart M. & van der Hoek, Daan & van Wingerden, Jan-Willem, 2020. "Closed-loop model-based wind farm control using FLORIS under time-varying inflow conditions," Renewable Energy, Elsevier, vol. 156(C), pages 719-730.
- Padullaparthi, Venkata Ramakrishna & Nagarathinam, Srinarayana & Vasan, Arunchandar & Menon, Vishnu & Sudarsanam, Depak, 2022. "FALCON- FArm Level CONtrol for wind turbines using multi-agent deep reinforcement learning," Renewable Energy, Elsevier, vol. 181(C), pages 445-456.
- Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions," Applied Energy, Elsevier, vol. 242(C), pages 1383-1395.
- Dong, Hongyang & Zhang, Jincheng & Zhao, Xiaowei, 2021. "Intelligent wind farm control via deep reinforcement learning and high-fidelity simulations," Applied Energy, Elsevier, vol. 292(C).
- Liu, Zhenkun & Jiang, Ping & Zhang, Lifang & Niu, Xinsong, 2020. "A combined forecasting model for time series: Application to short-term wind speed forecasting," Applied Energy, Elsevier, vol. 259(C).
- Wang, Tengyuan & Cai, Chang & Wang, Xinbao & Wang, Zekun & Chen, Yewen & Song, Juanjuan & Xu, Jianzhong & Zhang, Yuning & Li, Qingan, 2023. "A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow," Energy, Elsevier, vol. 271(C).
- Dou, Bingzheng & Qu, Timing & Lei, Liping & Zeng, Pan, 2020. "Optimization of wind turbine yaw angles in a wind farm using a three-dimensional yawed wake model," Energy, Elsevier, vol. 209(C).
- Niu, Xinsong & Wang, Jiyang, 2019. "A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 241(C), pages 519-539.
- Park, Jinkyoo & Law, Kincho H., 2016. "A data-driven, cooperative wind farm control to maximize the total power production," Applied Energy, Elsevier, vol. 165(C), pages 151-165.
- Gionfra, Nicolò & Sandou, Guillaume & Siguerdidjane, Houria & Faille, Damien & Loevenbruck, Philippe, 2019. "Wind farm distributed PSO-based control for constrained power generation maximization," Renewable Energy, Elsevier, vol. 133(C), pages 103-117.
- Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel," Energy, Elsevier, vol. 166(C), pages 819-833.
- Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
- Wang, Zhenyu & Ozbay, Ahmet & Tian, Wei & Hu, Hui, 2018. "An experimental study on the aerodynamic performances and wake characteristics of an innovative dual-rotor wind turbine," Energy, Elsevier, vol. 147(C), pages 94-109.
- Zhang, Guozhou & Hu, Weihao & Cao, Di & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2021. "A novel deep reinforcement learning enabled sparsity promoting adaptive control method to improve the stability of power systems with wind energy penetration," Renewable Energy, Elsevier, vol. 178(C), pages 363-376.
- Tang, Zhenhao & Zhao, Gengnan & Ouyang, Tinghui, 2021. "Two-phase deep learning model for short-term wind direction forecasting," Renewable Energy, Elsevier, vol. 173(C), pages 1005-1016.
- Chen, Kaixuan & Lin, Jin & Qiu, Yiwei & Liu, Feng & Song, Yonghua, 2022. "Joint optimization of wind farm layout considering optimal control," Renewable Energy, Elsevier, vol. 182(C), pages 787-796.
- He, Ruiyang & Yang, Hongxing & Sun, Shilin & Lu, Lin & Sun, Haiying & Gao, Xiaoxia, 2022. "A machine learning-based fatigue loads and power prediction method for wind turbines under yaw control," Applied Energy, Elsevier, vol. 326(C).
- Jeon, Sanghyeon & Kim, Bumsuk & Huh, Jongchul, 2015. "Comparison and verification of wake models in an onshore wind farm considering single wake condition of the 2 MW wind turbine," Energy, Elsevier, vol. 93(P2), pages 1769-1777.
- Song, Dongran & Liu, Junbo & Yang, Yinggang & Yang, Jian & Su, Mei & Wang, Yun & Gui, Ning & Yang, Xuebing & Huang, Lingxiang & Hoon Joo, Young, 2021. "Maximum wind energy extraction of large-scale wind turbines using nonlinear model predictive control via Yin-Yang grey wolf optimization algorithm," Energy, Elsevier, vol. 221(C).
- Adaramola, M.S. & Krogstad, P.-Å., 2011. "Experimental investigation of wake effects on wind turbine performance," Renewable Energy, Elsevier, vol. 36(8), pages 2078-2086.
- Zong, Haohua & Porté-Agel, Fernando, 2021. "Experimental investigation and analytical modelling of active yaw control for wind farm power optimization," Renewable Energy, Elsevier, vol. 170(C), pages 1228-1244.
- Majid Bastankhah & Fernando Porté-Agel, 2017. "A New Miniature Wind Turbine for Wind Tunnel Experiments. Part I: Design and Performance," Energies, MDPI, vol. 10(7), pages 1-19, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- He, Ruiyang & Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2022. "Wind tunnel tests for wind turbines: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
- Wang, Yu & Wei, Shanbi & Yang, Wei & Chai, Yi, 2023. "Adaptive economic predictive control for offshore wind farm active yaw considering generation uncertainty," Applied Energy, Elsevier, vol. 351(C).
- Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
- Yang, Shanghui & Deng, Xiaowei & Yang, Kun, 2024. "Machine-learning-based wind farm optimization through layout design and yaw control," Renewable Energy, Elsevier, vol. 224(C).
- Shen, Wen Zhong & Lin, Jian Wei & Jiang, Yu Hang & Feng, Ju & Cheng, Li & Zhu, Wei Jun, 2023. "A novel yaw wake model for wind farm control applications," Renewable Energy, Elsevier, vol. 218(C).
- Cai, Wei & Hu, Yang & Fang, Fang & Yao, Lujin & Liu, Jizhen, 2023. "Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines," Applied Energy, Elsevier, vol. 339(C).
- Huang, Zishuo & Wu, Wenchuan, 2024. "An efficient solution for large offshore wind farm power optimization with the Porté-Agel wake model: Optimality and efficiency," Energy, Elsevier, vol. 306(C).
- Bingzheng Dou & Zhanpei Yang & Michele Guala & Timing Qu & Liping Lei & Pan Zeng, 2020. "Comparison of Different Driving Modes for the Wind Turbine Wake in Wind Tunnels," Energies, MDPI, vol. 13(8), pages 1-17, April.
- Zhiwen Deng & Chang Xu & Zhihong Huo & Xingxing Han & Feifei Xue, 2023. "Yaw Optimisation for Wind Farm Production Maximisation Based on a Dynamic Wake Model," Energies, MDPI, vol. 16(9), pages 1-20, May.
- He, Ruiyang & Yang, Hongxing & Lu, Lin & Gao, Xiaoxia, 2024. "Site-specific wake steering strategy for combined power enhancement and fatigue mitigation within wind farms," Renewable Energy, Elsevier, vol. 225(C).
- Ma, Hongliang & Ge, Mingwei & Wu, Guangxing & Du, Bowen & Liu, Yongqian, 2021. "Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production," Applied Energy, Elsevier, vol. 303(C).
- Li, Rui & Zhang, Jincheng & Zhao, Xiaowei, 2022. "Dynamic wind farm wake modeling based on a Bilateral Convolutional Neural Network and high-fidelity LES data," Energy, Elsevier, vol. 258(C).
- Dou, Bingzheng & Qu, Timing & Lei, Liping & Zeng, Pan, 2020. "Optimization of wind turbine yaw angles in a wind farm using a three-dimensional yawed wake model," Energy, Elsevier, vol. 209(C).
- Zhu, Xiaoxun & Chen, Yao & Xu, Shinai & Zhang, Shaohai & Gao, Xiaoxia & Sun, Haiying & Wang, Yu & Zhao, Fei & Lv, Tiancheng, 2023. "Three-dimensional non-uniform full wake characteristics for yawed wind turbine with LiDAR-based experimental verification," Energy, Elsevier, vol. 270(C).
- Zhang, Yagang & Zhao, Yunpeng & Shen, Xiaoyu & Zhang, Jinghui, 2022. "A comprehensive wind speed prediction system based on Monte Carlo and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 305(C).
- Song, Jeonghwan & Kim, Taewan & You, Donghyun, 2023. "Particle swarm optimization of a wind farm layout with active control of turbine yaws," Renewable Energy, Elsevier, vol. 206(C), pages 738-747.
- Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions," Applied Energy, Elsevier, vol. 242(C), pages 1383-1395.
- Dong, Hongyang & Zhang, Jincheng & Zhao, Xiaowei, 2021. "Intelligent wind farm control via deep reinforcement learning and high-fidelity simulations," Applied Energy, Elsevier, vol. 292(C).
- Tong Shu & Young Hoon Joo, 2023. "Non-Centralised Balance Dispatch Strategy in Waked Wind Farms through a Graph Sparsification Partitioning Approach," Energies, MDPI, vol. 16(20), pages 1-21, October.
- Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
More about this item
Keywords
Wind farm control; Active yaw control; Axial induction control; Deep reinforcement learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:303:y:2024:i:c:s0360544224017237. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.