IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v199y2022icp1-10.html

Dynamic-mode-decomposition of the wake of the NREL-5MW wind turbine impinged by a laminar inflow

Author

Listed:
  • De Cillis, Giovanni
  • Semeraro, Onofrio
  • Leonardi, Stefano
  • De Palma, Pietro
  • Cherubini, Stefania

Abstract

Dynamic mode decomposition (DMD) has been applied to the wake of the NREL-5MW wind turbine invested by a uniform inflow, to identify the most dynamically relevant coherent structures characterizing this flow. The decomposition has been applied on a snapshot dataset obtained by Large-Eddy Simulation of the flow impinging on the wind turbine, whose tower and nacelle are modeled by the immersed boundary method, whereas rotor blades are modeled using the actuator line method. The Sparsity-Promoting DMD algorithm allows one to select a limited number of dynamic modes optimally reconstructing the snapshot sequence. Among the largest-amplitude selected modes, we found the tip vortices, oscillating at an angular frequency equal to three times the rotational frequency of the turbine. Interestingly, the remaining selected modes are characterized by low frequencies and large-scale spatial structures, reaching the frequency range of the wake meandering. This small set of dynamic modes is highly relevant for the formulation of accurate reduced-order models, which would eventually lead to the design of optimized wind farms layout and control to increase the energy density produced.

Suggested Citation

  • De Cillis, Giovanni & Semeraro, Onofrio & Leonardi, Stefano & De Palma, Pietro & Cherubini, Stefania, 2022. "Dynamic-mode-decomposition of the wake of the NREL-5MW wind turbine impinged by a laminar inflow," Renewable Energy, Elsevier, vol. 199(C), pages 1-10.
  • Handle: RePEc:eee:renene:v:199:y:2022:i:c:p:1-10
    DOI: 10.1016/j.renene.2022.08.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122012885
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.08.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Ming & Tan, Lei & Cao, Shuliang, 2020. "Method of dynamic mode decomposition and reconstruction with application to a three-stage multiphase pump," Energy, Elsevier, vol. 208(C).
    2. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Dynamic mode decomposition of gas-liquid flow in a rotodynamic multiphase pump," Renewable Energy, Elsevier, vol. 139(C), pages 1159-1175.
    3. Soledad Le Clainche & Luis S. Lorente & José M. Vega, 2018. "Wind Predictions Upstream Wind Turbines from a LiDAR Database," Energies, MDPI, vol. 11(3), pages 1-15, March.
    4. Han, Yadong & Tan, Lei, 2020. "Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 155(C), pages 725-734.
    5. Ryan Wiser & Joseph Rand & Joachim Seel & Philipp Beiter & Erin Baker & Eric Lantz & Patrick Gilman, 2021. "Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050," Nature Energy, Nature, vol. 6(5), pages 555-565, May.
    6. De Cillis, Giovanni & Cherubini, Stefania & Semeraro, Onofrio & Leonardi, Stefano & De Palma, Pietro, 2022. "Stability and optimal forcing analysis of a wind turbine wake: Comparison with POD," Renewable Energy, Elsevier, vol. 181(C), pages 765-785.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Göçmen, Tuhfe & Liew, Jaime & Kadoche, Elie & Dimitrov, Nikolay & Riva, Riccardo & Andersen, Søren Juhl & Lio, Alan W.H. & Quick, Julian & Réthoré, Pierre-Elouan & Dykes, Katherine, 2025. "Data-driven wind farm flow control and challenges towards field implementation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    2. Liu, Songyang & Xin, Zhiqiang & Wang, Lei & Xu, Yanming & Cai, Zhiming, 2025. "Fluid–structure interaction simulation of the effect of static yaw control on the aerodynamic responses and wake characteristics of floating offshore wind turbines," Energy, Elsevier, vol. 330(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Jin & Li, Wei & Wang, Xingyuan & Ji, Leilei & Agarwal, Ramesh & Lu, Zhanxiong, 2025. "Reduced-order variational Mode decomposition of transient flow fields in mixed-flow pumps during startup," Energy, Elsevier, vol. 334(C).
    2. Ge, Mingming & Manikkam, Pratulya & Ghossein, Joe & Kumar Subramanian, Roshan & Coutier-Delgosha, Olivier & Zhang, Guangjian, 2022. "Dynamic mode decomposition to classify cavitating flow regimes induced by thermodynamic effects," Energy, Elsevier, vol. 254(PC).
    3. Wu, Xitong & Li, Chenhao & Chen, Zhenyu & Luo, Xingqi & Feng, Jianjun & Zhu, Guojun, 2025. "Transition from quasi-periodic to chaotic pressure pulsations in gas‒liquid multiphase pumps: A nonlinear dynamics perspective," Energy, Elsevier, vol. 324(C).
    4. Zhou, Lei & Wen, Jiahao & Wang, Zhaokun & Deng, Pengru & Zhang, Hongfu, 2023. "High-fidelity wind turbine wake velocity prediction by surrogate model based on d-POD and LSTM," Energy, Elsevier, vol. 275(C).
    5. Hong, Aoyue & Xu, Qiang & Ma, Xiaojun & Guo, Liejin, 2025. "Investigations of flow structures and dynamical behaviors of steam jet condensation in crossflow based on dynamic mode decomposition and proper orthogonal decomposition," Energy, Elsevier, vol. 333(C).
    6. Liu, Ming & Tan, Lei & Cao, Shuliang, 2020. "Method of dynamic mode decomposition and reconstruction with application to a three-stage multiphase pump," Energy, Elsevier, vol. 208(C).
    7. Runqiang Zhang & Zhenwei Huang & Lei Tan & Yuchuan Wang & Erqi Wang, 2020. "Energy Performance and Radial Force of Vertical Axis Darrieus Turbine for Ocean Energy," Energies, MDPI, vol. 13(20), pages 1-15, October.
    8. Liu, Ming & Tan, Lei & Cao, Shuliang, 2020. "Influence of viscosity on energy performance and flow field of a multiphase pump," Renewable Energy, Elsevier, vol. 162(C), pages 1151-1160.
    9. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).
    10. Arnaiz del Pozo, Carlos & Cloete, Schalk & Jiménez Álvaro, Ángel, 2024. "Techno-economic assessment of integrated NH3-power co-production with CCS and energy storage in an LNG regasification terminal," Applied Energy, Elsevier, vol. 356(C).
    11. Zhang, Shaohai & Gao, Xiaoxia & Ma, Wanli & Lu, Hongkun & Lv, Tao & Xu, Shinai & Zhu, Xiaoxun & Sun, Haiying & Wang, Yu, 2023. "Derivation and verification of three-dimensional wake model of multiple wind turbines based on super-Gaussian function," Renewable Energy, Elsevier, vol. 215(C).
    12. Feng, Chen & Zheng, Yuan & Li, Chaoshun & Mai, Zijun & Wu, Wei & Chen, Huixiang, 2021. "Cost advantage of adjustable-speed pumped storage unit for daily operation in distributed hybrid system," Renewable Energy, Elsevier, vol. 176(C), pages 1-10.
    13. Li, Xiao & Liu, Pan & Feng, Maoyuan & Jordaan, Sarah M. & Cheng, Lei & Ming, Bo & Chen, Jie & Xie, Kang & Liu, Weibo, 2024. "Energy transition paradox: Solar and wind growth can hinder decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    14. Huang, Zhenwei & Huang, Zhenyou & Fan, Honggang, 2020. "Influence of C groove on energy performance and noise source of a NACA0009 hydrofoil with tip clearance," Renewable Energy, Elsevier, vol. 159(C), pages 726-735.
    15. C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
    16. Zhang, Jingjing & Li, Huanhuan & Chen, Diyi & Xu, Beibei & Mahmud, Md Apel, 2021. "Flexibility assessment of a hybrid power system: Hydroelectric units in balancing the injection of wind power," Renewable Energy, Elsevier, vol. 171(C), pages 1313-1326.
    17. Parkison, Sara B. & Kempton, Willett, 2022. "Marshaling ports required to meet US policy targets for offshore wind power," Energy Policy, Elsevier, vol. 163(C).
    18. Junjie Zhou & Chen‐Nan Liao & Ying‐Ju Chen, 2023. "Optimal selling scheme in social networks: hierarchical signaling, sequential selling, and chain structure," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2138-2153, July.
    19. Sara C. Pryor & Jacob J. Coburn & Rebecca J. Barthelmie, 2025. "Spatiotemporal Variability in Wind Turbine Blade Leading Edge Erosion," Energies, MDPI, vol. 18(2), pages 1-22, January.
    20. Zarah Thiel & Reza Fazeli & Frank Jotzo & Andreas Löschel, 2025. "Clean Hydrogen Pathways: Expert Projections from Australia and Implications for the World," CESifo Working Paper Series 12161, CESifo.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:199:y:2022:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.