IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v208y2020ics036054422031450x.html
   My bibliography  Save this article

Method of dynamic mode decomposition and reconstruction with application to a three-stage multiphase pump

Author

Listed:
  • Liu, Ming
  • Tan, Lei
  • Cao, Shuliang

Abstract

Helico-axial multiphase pumps are significant equipment in the exploitation of petroleum resources in offshore platforms, and in-depth understanding of gas-liquid flow fields is beneficial for the design and optimization. The method of dynamic mode decomposition and reconstruction is introduced and applied to study gas-liquid flow characteristics in a three-stage multiphase pump. Firstly, the theoretical relation between decomposed results and DMD parameters is investigated. Then, the dominant frequency and corresponding coherent structures inside the multiphase pump are revealed, which are induced by rotor-stator interaction and gas-liquid flow patterns. The reconstruction residual versus mode number represents a stepped curve, and the minimum residuals are below 10−5 governed by linear combination approximation. Comparison among reduced-order reconstruction, full-order reconstruction, and raw data shows that reduced-order reconstruction fields are effective in reflecting main flow characteristics, but fail to capture high order harmonic components, which is related to complex flow in diffuser passages and following vaneless areas.

Suggested Citation

  • Liu, Ming & Tan, Lei & Cao, Shuliang, 2020. "Method of dynamic mode decomposition and reconstruction with application to a three-stage multiphase pump," Energy, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:energy:v:208:y:2020:i:c:s036054422031450x
    DOI: 10.1016/j.energy.2020.118343
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422031450X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118343?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yun Xu & Shuliang Cao & Takeshi Sano & Tokiya Wakai & Martino Reclari, 2019. "Experimental Investigation on Transient Pressure Characteristics in a Helico-Axial Multiphase Pump," Energies, MDPI, vol. 12(3), pages 1-20, January.
    2. Wenwu Zhang & Zhiyi Yu & Muhammad Noaman Zahid & Yongjiang Li, 2018. "Study of the Gas Distribution in a Multiphase Rotodynamic Pump Based on Interphase Force Analysis," Energies, MDPI, vol. 11(5), pages 1-16, April.
    3. Ming Liu & Lei Tan & Shuliang Cao, 2018. "Design Method of Controllable Blade Angle and Orthogonal Optimization of Pressure Rise for a Multiphase Pump," Energies, MDPI, vol. 11(5), pages 1-20, April.
    4. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine," Energy, Elsevier, vol. 172(C), pages 712-732.
    5. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Dynamic mode decomposition of gas-liquid flow in a rotodynamic multiphase pump," Renewable Energy, Elsevier, vol. 139(C), pages 1159-1175.
    6. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Dynamic mode decomposition of cavitating flow around ALE 15 hydrofoil," Renewable Energy, Elsevier, vol. 139(C), pages 214-227.
    7. Han, Yadong & Tan, Lei, 2020. "Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 155(C), pages 725-734.
    8. Shuli Hong & Guoping Huang & Yuxuan Yang & Zepeng Liu, 2018. "Introduction of DMD Method to Study the Dynamic Structures of a Three-Dimensional Centrifugal Compressor with and without Flow Control," Energies, MDPI, vol. 11(11), pages 1-12, November.
    9. Jun-Won Suh & Jin-Woo Kim & Young-Seok Choi & Jin-Hyuk Kim & Won-Gu Joo & Kyoung-Yong Lee, 2017. "Multi-Objective Optimization of the Hydrodynamic Performance of the Second Stage of a Multi-Phase Pump," Energies, MDPI, vol. 10(9), pages 1-21, September.
    10. Jinsong Zhang & Lei Tan, 2018. "Energy Performance and Pressure Fluctuation of a Multiphase Pump with Different Gas Volume Fractions," Energies, MDPI, vol. 11(5), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Xianghao & Li, Hao & Zhang, Suqi & Zhang, Yuning & Li, Jinwei & Zhang, Yuning & Zhao, Weiqiang, 2023. "Hydrodynamic feature extraction and intelligent identification of flow regimes in vaneless space of a pump turbine using improved empirical wavelet transform and Bayesian optimized convolutional neura," Energy, Elsevier, vol. 282(C).
    2. Runqiang Zhang & Zhenwei Huang & Lei Tan & Yuchuan Wang & Erqi Wang, 2020. "Energy Performance and Radial Force of Vertical Axis Darrieus Turbine for Ocean Energy," Energies, MDPI, vol. 13(20), pages 1-15, October.
    3. Duan, Lei & Sun, Qinghong & He, Zanyang & Li, Gen, 2022. "Wake topology and energy recovery in floating horizontal-axis wind turbines with harmonic surge motion," Energy, Elsevier, vol. 260(C).
    4. Zhang, Wenwu & Xie, Xing & Zhu, Baoshan & Ma, Zhe, 2021. "Analysis of phase interaction and gas holdup in a multistage multiphase rotodynamic pump based on a modified Euler two-fluid model," Renewable Energy, Elsevier, vol. 164(C), pages 1496-1507.
    5. Zhou, Lei & Wen, Jiahao & Wang, Zhaokun & Deng, Pengru & Zhang, Hongfu, 2023. "High-fidelity wind turbine wake velocity prediction by surrogate model based on d-POD and LSTM," Energy, Elsevier, vol. 275(C).
    6. Huichuang Li & Wenwu Zhang & Liwei Hu & Baoshan Zhu & Fujun Wang, 2023. "Studies on Flow Characteristics of Gas–Liquid Multiphase Pumps Applied in Petroleum Transportation Engineering—A Review," Energies, MDPI, vol. 16(17), pages 1-24, August.
    7. De Cillis, Giovanni & Semeraro, Onofrio & Leonardi, Stefano & De Palma, Pietro & Cherubini, Stefania, 2022. "Dynamic-mode-decomposition of the wake of the NREL-5MW wind turbine impinged by a laminar inflow," Renewable Energy, Elsevier, vol. 199(C), pages 1-10.
    8. Zheng, Xianghao & Zhang, Suqi & Zhang, Yuning & Li, Jinwei & Zhang, Yuning, 2023. "Dynamic characteristic analysis of pressure pulsations of a pump turbine in turbine mode utilizing variational mode decomposition combined with Hilbert transform," Energy, Elsevier, vol. 280(C).
    9. Liu, Ming & Tan, Lei & Cao, Shuliang, 2020. "Influence of viscosity on energy performance and flow field of a multiphase pump," Renewable Energy, Elsevier, vol. 162(C), pages 1151-1160.
    10. Ge, Mingming & Manikkam, Pratulya & Ghossein, Joe & Kumar Subramanian, Roshan & Coutier-Delgosha, Olivier & Zhang, Guangjian, 2022. "Dynamic mode decomposition to classify cavitating flow regimes induced by thermodynamic effects," Energy, Elsevier, vol. 254(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Dynamic mode decomposition of gas-liquid flow in a rotodynamic multiphase pump," Renewable Energy, Elsevier, vol. 139(C), pages 1159-1175.
    2. Liu, Ming & Tan, Lei & Cao, Shuliang, 2020. "Influence of viscosity on energy performance and flow field of a multiphase pump," Renewable Energy, Elsevier, vol. 162(C), pages 1151-1160.
    3. Wang, Cong & Zhang, Yongxue & Yuan, Zhiyi & Ji, Kaizhuo, 2020. "Development and application of the entropy production diagnostic model to the cavitation flow of a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 154(C), pages 774-785.
    4. Zhang, Han & Gao, Xueping & Sun, Bowen & Qin, Zixue & Zhu, Hongtao, 2020. "Parameter analysis and performance optimization for the vertical pipe intake-outlet of a pumped hydro energy storage station," Renewable Energy, Elsevier, vol. 162(C), pages 1499-1518.
    5. Shi, Guangtai & Liu, Zongku & Xiao, Yexiang & Yang, Hong & Li, Helin & Liu, Xiaobing, 2020. "Effect of the inlet gas void fraction on the tip leakage vortex in a multiphase pump," Renewable Energy, Elsevier, vol. 150(C), pages 46-57.
    6. Weihua Sun & Zhiyi Yu & Wenwu Zhang, 2022. "Effect of Shear-Thinning Property on the Energy Performance and Flow Field of an Axial Flow Pump," Energies, MDPI, vol. 15(7), pages 1-15, March.
    7. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).
    8. Shi, Guangtai & Liu, Zongku & Xiao, Yexiang & Li, Helin & Liu, Xiaobing, 2020. "Tip leakage vortex trajectory and dynamics in a multiphase pump at off-design condition," Renewable Energy, Elsevier, vol. 150(C), pages 703-711.
    9. Pei, Yingju & Liu, Qingyou & Wang, Chuan & Wang, Guorong, 2021. "Energy efficiency prediction model and energy characteristics of subsea disc pump based on velocity slip and similarity theory," Energy, Elsevier, vol. 229(C).
    10. Liu, Yabin & Han, Yadong & Tan, Lei & Wang, Yuming, 2020. "Blade rotation angle on energy performance and tip leakage vortex in a mixed flow pump as turbine at pump mode," Energy, Elsevier, vol. 206(C).
    11. Huang, Renfang & Zhang, Zhen & Zhang, Wei & Mou, Jiegang & Zhou, Peijian & Wang, Yiwei, 2020. "Energy performance prediction of the centrifugal pumps by using a hybrid neural network," Energy, Elsevier, vol. 213(C).
    12. Honggang Fan & Jinsong Zhang & Wei Zhang & Bing Liu, 2020. "Multiparameter and Multiobjective Optimization Design Based on Orthogonal Method for Mixed Flow Fan," Energies, MDPI, vol. 13(11), pages 1-15, June.
    13. Su, Wen-Tao & Li, Yang & Wang, Ya-Hui & Zhang, Ya-Ning & Li, Xiao-Bin & Ma, Yu, 2020. "Influence of structural parameters on wavy-tilt-dam hydrodynamic mechanical seal performance in reactor coolant pump," Renewable Energy, Elsevier, vol. 166(C), pages 210-221.
    14. Han, Yadong & Tan, Lei, 2020. "Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 155(C), pages 725-734.
    15. Feng, Chen & Zheng, Yuan & Li, Chaoshun & Mai, Zijun & Wu, Wei & Chen, Huixiang, 2021. "Cost advantage of adjustable-speed pumped storage unit for daily operation in distributed hybrid system," Renewable Energy, Elsevier, vol. 176(C), pages 1-10.
    16. C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
    17. Zhang, Jingjing & Li, Huanhuan & Chen, Diyi & Xu, Beibei & Mahmud, Md Apel, 2021. "Flexibility assessment of a hybrid power system: Hydroelectric units in balancing the injection of wind power," Renewable Energy, Elsevier, vol. 171(C), pages 1313-1326.
    18. Cognet, V. & Courrech du Pont, S. & Thiria, B., 2020. "Material optimization of flexible blades for wind turbines," Renewable Energy, Elsevier, vol. 160(C), pages 1373-1384.
    19. Mosbahi, Mabrouk & Ayadi, Ahmed & Chouaibi, Youssef & Driss, Zied & Tucciarelli, Tullio, 2020. "Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine," Renewable Energy, Elsevier, vol. 162(C), pages 1087-1103.
    20. Ge, Mingming & Manikkam, Pratulya & Ghossein, Joe & Kumar Subramanian, Roshan & Coutier-Delgosha, Olivier & Zhang, Guangjian, 2022. "Dynamic mode decomposition to classify cavitating flow regimes induced by thermodynamic effects," Energy, Elsevier, vol. 254(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:208:y:2020:i:c:s036054422031450x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.