IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v166y2020icp210-221.html
   My bibliography  Save this article

Influence of structural parameters on wavy-tilt-dam hydrodynamic mechanical seal performance in reactor coolant pump

Author

Listed:
  • Su, Wen-Tao
  • Li, Yang
  • Wang, Ya-Hui
  • Zhang, Ya-Ning
  • Li, Xiao-Bin
  • Ma, Yu

Abstract

This work analyzes the operation conditions of the wavy-tilt-dam (WTD) mechanical seal under different structural parameters using the DNS method. The pressure difference within the liquid film is considered due to the complicated constructor of the WTD mechanical seal. The effects of the main structural parameters on the mechanical seal are studied, including the film thickness, taper, dam-width ratio, and waviness amplitude. Numerical results show that the increase of base film thickness will increase the leakage rate and decrease the opening force. The larger taper will lead to a higher leakage rate and opening force. As the taper increases, the stiffness increases first and then decreases. As the dam-width ratio increases, the leakage rate, the opening force, and the stiffness will increase correspondingly. The waviness amplitude has a small effect on these three performance parameters. Besides, the comparisons between the Reynolds approximation and the DNS technique show that the Reynolds approximation can be applied to analyze the leakage rate under different thicknesses, small tapers, and large dam-width ratios. The opening force under small thickness, different tapers, and different dam-width ratios can also be considered using the Reynolds approximation. To ensure the safe and stable operation of RCP, the optimal structural parameters can be set as taper β = 600 μrad, dam-width ratio ϖ = 0.2, waviness amplitude α = 0.8, and wavenumber k = 9.

Suggested Citation

  • Su, Wen-Tao & Li, Yang & Wang, Ya-Hui & Zhang, Ya-Ning & Li, Xiao-Bin & Ma, Yu, 2020. "Influence of structural parameters on wavy-tilt-dam hydrodynamic mechanical seal performance in reactor coolant pump," Renewable Energy, Elsevier, vol. 166(C), pages 210-221.
  • Handle: RePEc:eee:renene:v:166:y:2020:i:c:p:210-221
    DOI: 10.1016/j.renene.2020.11.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120318759
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gebreslassie, Mulualem G. & Tabor, Gavin R. & Belmont, Michael R., 2013. "Numerical simulation of a new type of cross flow tidal turbine using OpenFOAM – Part II: Investigation of turbine-to-turbine interaction," Renewable Energy, Elsevier, vol. 50(C), pages 1005-1013.
    2. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine," Energy, Elsevier, vol. 172(C), pages 712-732.
    3. Han, Yadong & Tan, Lei, 2020. "Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 155(C), pages 725-734.
    4. Gebreslassie, Mulualem G. & Tabor, Gavin R. & Belmont, Michael R., 2013. "Numerical simulation of a new type of cross flow tidal turbine using OpenFOAM – Part I: Calibration of energy extraction," Renewable Energy, Elsevier, vol. 50(C), pages 994-1004.
    5. Kok, Besir & Benli, Hüseyin, 2017. "Energy diversity and nuclear energy for sustainable development in Turkey," Renewable Energy, Elsevier, vol. 111(C), pages 870-877.
    6. Luqman, Muhammad & Ahmad, Najid & Bakhsh, Khuda, 2019. "Nuclear energy, renewable energy and economic growth in Pakistan: Evidence from non-linear autoregressive distributed lag model," Renewable Energy, Elsevier, vol. 139(C), pages 1299-1309.
    7. Simin Shen & Zhongdong Qian & Bin Ji, 2019. "Numerical Analysis of Mechanical Energy Dissipation for an Axial-Flow Pump Based on Entropy Generation Theory," Energies, MDPI, vol. 12(21), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amein, Hamza & Akoush, Bassem M. & El-Bakry, M. Medhat & Abubakr, Mohamed & Hassan, Muhammed A., 2022. "Enhancing the energy utilization in parabolic trough concentrators with cracked heat collection elements using a cost-effective rotation mechanism," Renewable Energy, Elsevier, vol. 181(C), pages 250-266.
    2. Huilong Chen & Zepeng Wei & Juncheng Lu & Kai Gui & Yingjian Chen & Qian Cheng & Yanxia Fu & Binjuan Zhao, 2022. "Spiral Groove Parametric Study of Solid Particles Deposition Characteristics in Sealing Lubrication Film," Energies, MDPI, vol. 15(11), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).
    2. Yücenur, G. Nilay & Ipekçi, Ahmet, 2021. "SWARA/WASPAS methods for a marine current energy plant location selection problem," Renewable Energy, Elsevier, vol. 163(C), pages 1287-1298.
    3. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    4. Pei, Yingju & Liu, Qingyou & Wang, Chuan & Wang, Guorong, 2021. "Energy efficiency prediction model and energy characteristics of subsea disc pump based on velocity slip and similarity theory," Energy, Elsevier, vol. 229(C).
    5. Liu, Ming & Tan, Lei & Cao, Shuliang, 2020. "Method of dynamic mode decomposition and reconstruction with application to a three-stage multiphase pump," Energy, Elsevier, vol. 208(C).
    6. Gebreslassie, Mulualem G. & Tabor, Gavin R. & Belmont, Michael R., 2015. "Investigation of the performance of a staggered configuration of tidal turbines using CFD," Renewable Energy, Elsevier, vol. 80(C), pages 690-698.
    7. Sutherland, Duncan & Ordonez-Sanchez, Stephanie & Belmont, Michael R. & Moon, Ian & Steynor, Jeffrey & Davey, Thomas & Bruce, Tom, 2018. "Experimental optimisation of power for large arrays of cross-flow tidal turbines," Renewable Energy, Elsevier, vol. 116(PA), pages 685-696.
    8. Liu, Yabin & Han, Yadong & Tan, Lei & Wang, Yuming, 2020. "Blade rotation angle on energy performance and tip leakage vortex in a mixed flow pump as turbine at pump mode," Energy, Elsevier, vol. 206(C).
    9. Maxime Binama & Kan Kan & Huixiang Chen & Yuan Zheng & Daqing Zhou & Alexis Muhirwa & Godfrey M. Bwimba, 2021. "Investigation into Pump Mode Flow Dynamics for a Mixed Flow PAT with Adjustable Runner Blades," Energies, MDPI, vol. 14(9), pages 1-28, May.
    10. Ebrahimi, Mohsen & Duncan, Susannah & Belmont, Michael R. & Kripakaran, Prakash & Tabor, Gavin R. & Moon, Ian & Djordjević, Slobodan, 2020. "Flume experiments on the impact of a cross-flow turbine on an erodible bed," Renewable Energy, Elsevier, vol. 153(C), pages 1219-1225.
    11. Ni, Dan & Zhang, Ning & Gao, Bo & Li, Zhong & Yang, Minguan, 2020. "Dynamic measurements on unsteady pressure pulsations and flow distributions in a nuclear reactor coolant pump," Energy, Elsevier, vol. 198(C).
    12. Garcia-Oliva, Miriam & Djordjević, Slobodan & Tabor, Gavin R., 2017. "The influence of channel geometry on tidal energy extraction in estuaries," Renewable Energy, Elsevier, vol. 101(C), pages 514-525.
    13. Zhang, Jisheng & Liu, Siyuan & Guo, Yakun & Sun, Ke & Guan, Dawei, 2022. "Performance of a bidirectional horizontal-axis tidal turbine with passive flow control devices," Renewable Energy, Elsevier, vol. 194(C), pages 997-1008.
    14. Maman Suratman & Nurazilah Zainal, 2021. "Social Development from Nuclear and Other Energy: A Myth or Reality from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 114-121.
    15. Feng, Chen & Zheng, Yuan & Li, Chaoshun & Mai, Zijun & Wu, Wei & Chen, Huixiang, 2021. "Cost advantage of adjustable-speed pumped storage unit for daily operation in distributed hybrid system," Renewable Energy, Elsevier, vol. 176(C), pages 1-10.
    16. C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
    17. Zhang, Jingjing & Li, Huanhuan & Chen, Diyi & Xu, Beibei & Mahmud, Md Apel, 2021. "Flexibility assessment of a hybrid power system: Hydroelectric units in balancing the injection of wind power," Renewable Energy, Elsevier, vol. 171(C), pages 1313-1326.
    18. Chen, Long & Yao, Yu & Wang, Zhi-liang, 2020. "Development and validation of a prediction model for the multi-wake of tidal stream turbines," Renewable Energy, Elsevier, vol. 155(C), pages 800-809.
    19. Mosbahi, Mabrouk & Ayadi, Ahmed & Chouaibi, Youssef & Driss, Zied & Tucciarelli, Tullio, 2020. "Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine," Renewable Energy, Elsevier, vol. 162(C), pages 1087-1103.
    20. Yang, Fan & Li, Zhongbin & Yuan, Yao & Lin, Zhikang & Zhou, Guangxin & Ji, Qingwei, 2022. "Study on vortex flow and pressure fluctuation in dustpan-shaped conduit of a low head axial-flow pump as turbine," Renewable Energy, Elsevier, vol. 196(C), pages 856-869.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:166:y:2020:i:c:p:210-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.