IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225013702.html
   My bibliography  Save this article

Combined effects of yaw misalignment and inflow turbulence on tidal turbine wake development

Author

Listed:
  • Allmark, Matthew
  • Mason-Jones, Allan
  • Facq, Jean-Valery
  • Gaurier, Benoît
  • Germain, Gregory
  • O’Doherty, Tim

Abstract

The development of wakes downstream of horizontal-axis tidal stream turbines is crucial because these devices, when installed in arrays, generate predictable renewable energy. Wake formation impacts both individual turbine performance and overall array efficiency, as upstream turbines can reduce the power output of downstream devices. Additionally, tidal flows are often asymmetric and vary in the predominant incoming flow angle over short time scales. This study presents methods and findings from a lab-scale experimental campaign that investigated wake structure under combined yaw and turbulent flow conditions. A 0.9 m lab-scale tidal turbine was tested under both low- and high-turbulence inflow conditions, with three yaw configurations: ±20° and a no-yaw case. A three-component laser Doppler velocimeter measured the downstream wake to characterise its structure. Under low turbulence, yawing slightly improved wake recovery. While most yaw cases showed wake skew, the centre-line progression of the wake was complex, influenced by constrained inflow characteristics. Some degree of self-similarity in the wake was observed, likely increasing with downstream distance. Analysis of wake turbulence revealed a complex picture. Turbulent kinetic energy was particularly high at the blade tips under yawed flow conditions. In the near to mid-wake region, turbulence length scales were smaller than the rotor plane. The return to isotropic conditions depended on inflow turbulence anisotropy, challenging common assumptions in computational turbulence models. These findings add to a more complex understanding of wake dynamics. The findings of this research suggest that optimisation of tidal devices and arrays utilising devices yawing and wake steering could be fruitful, however the limits of this lab-scale experiment in terms scale, blockage and ambient flow conditions mean that further work is needed.

Suggested Citation

  • Allmark, Matthew & Mason-Jones, Allan & Facq, Jean-Valery & Gaurier, Benoît & Germain, Gregory & O’Doherty, Tim, 2025. "Combined effects of yaw misalignment and inflow turbulence on tidal turbine wake development," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225013702
    DOI: 10.1016/j.energy.2025.135728
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225013702
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135728?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Durán Medina, Olmo & Schmitt, François G. & Calif, Rudy & Germain, Grégory & Gaurier, Benoît, 2017. "Turbulence analysis and multiscale correlations between synchronized flow velocity and marine turbine power production," Renewable Energy, Elsevier, vol. 112(C), pages 314-327.
    2. Mason-Jones, A. & O'Doherty, D.M. & Morris, C.E. & O'Doherty, T. & Byrne, C.B. & Prickett, P.W. & Grosvenor, R.I. & Owen, I. & Tedds, S. & Poole, R.J., 2012. "Non-dimensional scaling of tidal stream turbines," Energy, Elsevier, vol. 44(1), pages 820-829.
    3. Allmark, Matthew & Ellis, Robert & Lloyd, Catherine & Ordonez-Sanchez, Stephanie & Johannesen, Kate & Byrne, Carl & Johnstone, Cameron & O’Doherty, Tim & Mason-Jones, Allan, 2020. "The development, design and characterisation of a scale model Horizontal Axis Tidal Turbine for dynamic load quantification," Renewable Energy, Elsevier, vol. 156(C), pages 913-930.
    4. Nitin Kolekar & Ashwin Vinod & Arindam Banerjee, 2019. "On Blockage Effects for a Tidal Turbine in Free Surface Proximity," Energies, MDPI, vol. 12(17), pages 1-20, August.
    5. Pinon, Grégory & Mycek, Paul & Germain, Grégory & Rivoalen, Elie, 2012. "Numerical simulation of the wake of marine current turbines with a particle method," Renewable Energy, Elsevier, vol. 46(C), pages 111-126.
    6. Schluntz, J. & Willden, R.H.J., 2015. "The effect of blockage on tidal turbine rotor design and performance," Renewable Energy, Elsevier, vol. 81(C), pages 432-441.
    7. Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
    8. Bahaj, A.S. & Molland, A.F. & Chaplin, J.R. & Batten, W.M.J., 2007. "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank," Renewable Energy, Elsevier, vol. 32(3), pages 407-426.
    9. Sarlak, H. & Nishino, T. & Martínez-Tossas, L.A. & Meneveau, C. & Sørensen, J.N., 2016. "Assessment of blockage effects on the wake characteristics and power of wind turbines," Renewable Energy, Elsevier, vol. 93(C), pages 340-352.
    10. Bahaj, A.S. & Myers, L.E., 2013. "Shaping array design of marine current energy converters through scaled experimental analysis," Energy, Elsevier, vol. 59(C), pages 83-94.
    11. Ebdon, Tim & Allmark, Matthew J. & O’Doherty, Daphne M. & Mason-Jones, Allan & O’Doherty, Tim & Germain, Gregory & Gaurier, Benoit, 2021. "The impact of turbulence and turbine operating condition on the wakes of tidal turbines," Renewable Energy, Elsevier, vol. 165(P2), pages 96-116.
    12. Mycek, Paul & Gaurier, Benoît & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2014. "Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: Two interacting turbines," Renewable Energy, Elsevier, vol. 68(C), pages 876-892.
    13. Frost, Carwyn H. & Evans, Paul S. & Harrold, Magnus J. & Mason-Jones, Allan & O'Doherty, Tim & O'Doherty, Daphne M., 2017. "The impact of axial flow misalignment on a tidal turbine," Renewable Energy, Elsevier, vol. 113(C), pages 1333-1344.
    14. Zhang, Yuquan & Zang, Wei & Zheng, Jinhai & Cappietti, Lorenzo & Zhang, Jisheng & Zheng, Yuan & Fernandez-Rodriguez, E., 2021. "The influence of waves propagating with the current on the wake of a tidal stream turbine," Applied Energy, Elsevier, vol. 290(C).
    15. Mycek, Paul & Gaurier, Benoît & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2014. "Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine," Renewable Energy, Elsevier, vol. 66(C), pages 729-746.
    16. Tedds, S.C. & Owen, I. & Poole, R.J., 2014. "Near-wake characteristics of a model horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 63(C), pages 222-235.
    17. Chen, Yaling & Lin, Binliang & Lin, Jie & Wang, Shujie, 2017. "Experimental study of wake structure behind a horizontal axis tidal stream turbine," Applied Energy, Elsevier, vol. 196(C), pages 82-96.
    18. Stansby, Peter & Stallard, Tim, 2016. "Fast optimisation of tidal stream turbine positions for power generation in small arrays with low blockage based on superposition of self-similar far-wake velocity deficit profiles," Renewable Energy, Elsevier, vol. 92(C), pages 366-375.
    19. Stephanie Ordonez-Sanchez & Matthew Allmark & Kate Porter & Robert Ellis & Catherine Lloyd & Ivan Santic & Tim O’Doherty & Cameron Johnstone, 2019. "Analysis of a Horizontal-Axis Tidal Turbine Performance in the Presence of Regular and Irregular Waves Using Two Control Strategies," Energies, MDPI, vol. 12(3), pages 1-22, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ebdon, Tim & Allmark, Matthew J. & O’Doherty, Daphne M. & Mason-Jones, Allan & O’Doherty, Tim & Germain, Gregory & Gaurier, Benoit, 2021. "The impact of turbulence and turbine operating condition on the wakes of tidal turbines," Renewable Energy, Elsevier, vol. 165(P2), pages 96-116.
    2. Chen, Long & Yao, Yu & Wang, Zhi-liang, 2020. "Development and validation of a prediction model for the multi-wake of tidal stream turbines," Renewable Energy, Elsevier, vol. 155(C), pages 800-809.
    3. Han, Cong & Banerjee, Arindam, 2024. "Near wake evolution of a tidal stream turbine due to asymmetric sheared turbulent inflow with different integral length scales," Renewable Energy, Elsevier, vol. 237(PD).
    4. Vinod, Ashwin & Banerjee, Arindam, 2019. "Performance and near-wake characterization of a tidal current turbine in elevated levels of free stream turbulence," Applied Energy, Elsevier, vol. 254(C).
    5. Craig Hill & Vincent S. Neary & Michele Guala & Fotis Sotiropoulos, 2020. "Performance and Wake Characterization of a Model Hydrokinetic Turbine: The Reference Model 1 (RM1) Dual Rotor Tidal Energy Converter," Energies, MDPI, vol. 13(19), pages 1-21, October.
    6. Sentchev, Alexei & Thiébaut, Maxime & Schmitt, François G., 2020. "Impact of turbulence on power production by a free-stream tidal turbine in real sea conditions," Renewable Energy, Elsevier, vol. 147(P1), pages 1932-1940.
    7. Vinod, Ashwin & Han, Cong & Banerjee, Arindam, 2021. "Tidal turbine performance and near-wake characteristics in a sheared turbulent inflow," Renewable Energy, Elsevier, vol. 175(C), pages 840-852.
    8. Chen, Yaling & Lin, Binliang & Lin, Jie & Wang, Shujie, 2017. "Experimental study of wake structure behind a horizontal axis tidal stream turbine," Applied Energy, Elsevier, vol. 196(C), pages 82-96.
    9. Niebuhr, C.M. & Schmidt, S. & van Dijk, M. & Smith, L. & Neary, V.S., 2022. "A review of commercial numerical modelling approaches for axial hydrokinetic turbine wake analysis in channel flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Ross, Hannah & Polagye, Brian, 2020. "An experimental assessment of analytical blockage corrections for turbines," Renewable Energy, Elsevier, vol. 152(C), pages 1328-1341.
    11. Zhang, Jisheng & Zhou, Yudi & Lin, Xiangfeng & Wang, Guohui & Guo, Yakun & Chen, Hao, 2022. "Experimental investigation on wake and thrust characteristics of a twin-rotor horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 195(C), pages 701-715.
    12. Mujahid Badshah & Saeed Badshah & James VanZwieten & Sakhi Jan & Muhammad Amir & Suheel Abdullah Malik, 2019. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile," Energies, MDPI, vol. 12(11), pages 1-22, June.
    13. Allmark, Matthew & Ellis, Robert & Lloyd, Catherine & Ordonez-Sanchez, Stephanie & Johannesen, Kate & Byrne, Carl & Johnstone, Cameron & O’Doherty, Tim & Mason-Jones, Allan, 2020. "The development, design and characterisation of a scale model Horizontal Axis Tidal Turbine for dynamic load quantification," Renewable Energy, Elsevier, vol. 156(C), pages 913-930.
    14. Faizan, Muhammad & Badshah, Saeed & Badshah, Mujahid & Haider, Basharat Ali, 2022. "Performance and wake analysis of horizontal axis tidal current turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 184(C), pages 740-752.
    15. Edmunds, Matt & Williams, Alison J. & Masters, Ian & Banerjee, Arindam & VanZwieten, James H., 2020. "A spatially nonlinear generalised actuator disk model for the simulation of horizontal axis wind and tidal turbines," Energy, Elsevier, vol. 194(C).
    16. Druault, Philippe & Gaurier, Benoît & Germain, Grégory, 2022. "Spatial integration effect on velocity spectrum: Towards an interpretation of the − 11/3 power law observed in the spectra of turbine outputs," Renewable Energy, Elsevier, vol. 181(C), pages 1062-1080.
    17. Di Felice, Fabio & Capone, Alessandro & Romano, Giovanni Paolo & Alves Pereira, Francisco, 2023. "Experimental study of the turbulent flow in the wake of a horizontal axis tidal current turbine," Renewable Energy, Elsevier, vol. 212(C), pages 17-34.
    18. Chen, Yaling & Lin, Binliang & Sun, Jian & Guo, Jinxi & Wu, Wenlong, 2019. "Hydrodynamic effects of the ratio of rotor diameter to water depth: An experimental study," Renewable Energy, Elsevier, vol. 136(C), pages 331-341.
    19. Maduka, Maduka & Li, Chi Wai, 2022. "Experimental evaluation of power performance and wake characteristics of twin flanged duct turbines in tandem under bi-directional tidal flows," Renewable Energy, Elsevier, vol. 199(C), pages 1543-1567.
    20. Modali, Pranav K. & Vinod, Ashwin & Banerjee, Arindam, 2021. "Towards a better understanding of yawed turbine wake for efficient wake steering in tidal arrays," Renewable Energy, Elsevier, vol. 177(C), pages 482-494.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225013702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.