IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v181y2022icp1062-1080.html
   My bibliography  Save this article

Spatial integration effect on velocity spectrum: Towards an interpretation of the − 11/3 power law observed in the spectra of turbine outputs

Author

Listed:
  • Druault, Philippe
  • Gaurier, Benoît
  • Germain, Grégory

Abstract

To improve the turbine operational life, the interaction between flow properties and turbine performance needs to be elucidated. We then propose to examine the physical origin of the power-law scaling in the inertial range of turbine power outputs by experimentally exploring the spectral content of a 1:20 scaled model of a three-bladed horizontal-axis turbine positioned in a 3D turbulent flow. First, measurements confirm that the turbine power frequency spectra exhibit a power law decay proportional to −11/3 in the inertial range. Knowing that the turbine power fluctuations are linearly dependent on the incoming velocity fluctuations, PIV measurements are carried out to study the effect of the spatially integrated velocity onto its resulted spectrum. It is demonstrated that in inhomogeneous anisotropic turbulent flow, the velocity spectrum of its spatial average along N direction(s) has an inertial slope of −5/3 − 2N/3. This information is used to physically interpret the power-law scaling in the inertial range of the turbine power spectra. The previously observed f−11/3 scaling results from a 2D-spatial average velocity field coupled with a spectral average over blades. This physical explanation confirms previous works in which a transfer function was developed between incoming turbulence and the turbine power outputs.

Suggested Citation

  • Druault, Philippe & Gaurier, Benoît & Germain, Grégory, 2022. "Spatial integration effect on velocity spectrum: Towards an interpretation of the − 11/3 power law observed in the spectra of turbine outputs," Renewable Energy, Elsevier, vol. 181(C), pages 1062-1080.
  • Handle: RePEc:eee:renene:v:181:y:2022:i:c:p:1062-1080
    DOI: 10.1016/j.renene.2021.09.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121014014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Qing'an & Murata, Junsuke & Endo, Masayuki & Maeda, Takao & Kamada, Yasunari, 2016. "Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (Part I: Power performance)," Energy, Elsevier, vol. 113(C), pages 713-722.
    2. Ahmed, U. & Apsley, D.D. & Afgan, I. & Stallard, T. & Stansby, P.K., 2017. "Fluctuating loads on a tidal turbine due to velocity shear and turbulence: Comparison of CFD with field data," Renewable Energy, Elsevier, vol. 112(C), pages 235-246.
    3. Allmark, Matthew & Ellis, Robert & Ebdon, Tim & Lloyd, Catherine & Ordonez-Sanchez, Stephanie & Martinez, Rodrigo & Mason-Jones, Allan & Johnstone, Cameron & O’Doherty, Tim, 2021. "A detailed study of tidal turbine power production and dynamic loading under grid generated turbulence and turbine wake operation," Renewable Energy, Elsevier, vol. 169(C), pages 1422-1439.
    4. Durán Medina, Olmo & Schmitt, François G. & Calif, Rudy & Germain, Grégory & Gaurier, Benoît, 2017. "Turbulence analysis and multiscale correlations between synchronized flow velocity and marine turbine power production," Renewable Energy, Elsevier, vol. 112(C), pages 314-327.
    5. Sentchev, Alexei & Thiébaut, Maxime & Schmitt, François G., 2020. "Impact of turbulence on power production by a free-stream tidal turbine in real sea conditions," Renewable Energy, Elsevier, vol. 147(P1), pages 1932-1940.
    6. Li, Qing'an & Murata, Junsuke & Endo, Masayuki & Maeda, Takao & Kamada, Yasunari, 2016. "Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (part II: Wake characteristics)," Energy, Elsevier, vol. 113(C), pages 1304-1315.
    7. Lewis, Matt & McNaughton, James & Márquez-Dominguez, Concha & Todeschini, Grazia & Togneri, Michael & Masters, Ian & Allmark, Matthew & Stallard, Tim & Neill, Simon & Goward-Brown, Alice & Robins, Pet, 2019. "Power variability of tidal-stream energy and implications for electricity supply," Energy, Elsevier, vol. 183(C), pages 1061-1074.
    8. Bahaj, A.S. & Molland, A.F. & Chaplin, J.R. & Batten, W.M.J., 2007. "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank," Renewable Energy, Elsevier, vol. 32(3), pages 407-426.
    9. Katzenstein, Warren & Fertig, Emily & Apt, Jay, 2010. "The variability of interconnected wind plants," Energy Policy, Elsevier, vol. 38(8), pages 4400-4410, August.
    10. Ebdon, Tim & Allmark, Matthew J. & O’Doherty, Daphne M. & Mason-Jones, Allan & O’Doherty, Tim & Germain, Gregory & Gaurier, Benoit, 2021. "The impact of turbulence and turbine operating condition on the wakes of tidal turbines," Renewable Energy, Elsevier, vol. 165(P2), pages 96-116.
    11. Mycek, Paul & Gaurier, Benoît & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2014. "Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: Two interacting turbines," Renewable Energy, Elsevier, vol. 68(C), pages 876-892.
    12. Mycek, Paul & Gaurier, Benoît & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2014. "Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine," Renewable Energy, Elsevier, vol. 66(C), pages 729-746.
    13. Gaurier, Benoît & Ikhennicheu, Maria & Germain, Grégory & Druault, Philippe, 2020. "Experimental study of bathymetry generated turbulence on tidal turbine behaviour," Renewable Energy, Elsevier, vol. 156(C), pages 1158-1170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magnier, Maëlys & Delette, Nina & Druault, Philippe & Gaurier, Benoît & Germain, Grégory, 2022. "Experimental study of the shear flow effect on tidal turbine blade loading variation," Renewable Energy, Elsevier, vol. 193(C), pages 744-757.
    2. Druault, Philippe & Germain, Grégory, 2022. "Experimental investigation of the upstream turbulent flow modifications in front of a scaled tidal turbine," Renewable Energy, Elsevier, vol. 196(C), pages 1204-1217.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faizan, Muhammad & Badshah, Saeed & Badshah, Mujahid & Haider, Basharat Ali, 2022. "Performance and wake analysis of horizontal axis tidal current turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 184(C), pages 740-752.
    2. Gaurier, Benoît & Carlier, Clément & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2020. "Three tidal turbines in interaction: An experimental study of turbulence intensity effects on wakes and turbine performance," Renewable Energy, Elsevier, vol. 148(C), pages 1150-1164.
    3. Vinod, Ashwin & Han, Cong & Banerjee, Arindam, 2021. "Tidal turbine performance and near-wake characteristics in a sheared turbulent inflow," Renewable Energy, Elsevier, vol. 175(C), pages 840-852.
    4. Mujahid Badshah & Saeed Badshah & James VanZwieten & Sakhi Jan & Muhammad Amir & Suheel Abdullah Malik, 2019. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile," Energies, MDPI, vol. 12(11), pages 1-22, June.
    5. Vinod, Ashwin & Banerjee, Arindam, 2019. "Performance and near-wake characterization of a tidal current turbine in elevated levels of free stream turbulence," Applied Energy, Elsevier, vol. 254(C).
    6. Magnier, Maëlys & Delette, Nina & Druault, Philippe & Gaurier, Benoît & Germain, Grégory, 2022. "Experimental study of the shear flow effect on tidal turbine blade loading variation," Renewable Energy, Elsevier, vol. 193(C), pages 744-757.
    7. Craig Hill & Vincent S. Neary & Michele Guala & Fotis Sotiropoulos, 2020. "Performance and Wake Characterization of a Model Hydrokinetic Turbine: The Reference Model 1 (RM1) Dual Rotor Tidal Energy Converter," Energies, MDPI, vol. 13(19), pages 1-21, October.
    8. Silva, R.N. & Nunes, M.M. & Mendes, R.C.F. & Brasil, A.C.P. & Oliveira, T.F., 2023. "A novel mechanism of turbulent kinetic energy harvesting by horizontal-axis wind and hydrokinetic turbines," Energy, Elsevier, vol. 283(C).
    9. Sentchev, Alexei & Thiébaut, Maxime & Schmitt, François G., 2020. "Impact of turbulence on power production by a free-stream tidal turbine in real sea conditions," Renewable Energy, Elsevier, vol. 147(P1), pages 1932-1940.
    10. Gaurier, Benoît & Ikhennicheu, Maria & Germain, Grégory & Druault, Philippe, 2020. "Experimental study of bathymetry generated turbulence on tidal turbine behaviour," Renewable Energy, Elsevier, vol. 156(C), pages 1158-1170.
    11. Modali, Pranav K. & Vinod, Ashwin & Banerjee, Arindam, 2021. "Towards a better understanding of yawed turbine wake for efficient wake steering in tidal arrays," Renewable Energy, Elsevier, vol. 177(C), pages 482-494.
    12. Mickael Grondeau & Sylvain S. Guillou & Jean Charles Poirier & Philippe Mercier & Emmnuel Poizot & Yann Méar, 2022. "Studying the Wake of a Tidal Turbine with an IBM-LBM Approach Using Realistic Inflow Conditions," Energies, MDPI, vol. 15(6), pages 1-34, March.
    13. Thiébot, Jérôme & Guillou, Nicolas & Guillou, Sylvain & Good, Andrew & Lewis, Michael, 2020. "Wake field study of tidal turbines under realistic flow conditions," Renewable Energy, Elsevier, vol. 151(C), pages 1196-1208.
    14. Myriam Slama & Camille Choma Bex & Grégory Pinon & Michael Togneri & Iestyn Evans, 2021. "Lagrangian Vortex Computations of a Four Tidal Turbine Array: An Example Based on the NEPTHYD Layout in the Alderney Race," Energies, MDPI, vol. 14(13), pages 1-23, June.
    15. Draycott, S. & Sellar, B. & Davey, T. & Noble, D.R. & Venugopal, V. & Ingram, D.M., 2019. "Capture and simulation of the ocean environment for offshore renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 15-29.
    16. Zhang, Jisheng & Zhou, Yudi & Lin, Xiangfeng & Wang, Guohui & Guo, Yakun & Chen, Hao, 2022. "Experimental investigation on wake and thrust characteristics of a twin-rotor horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 195(C), pages 701-715.
    17. Tian, Wenlong & VanZwieten, James H. & Pyakurel, Parakram & Li, Yanjun, 2016. "Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine," Energy, Elsevier, vol. 111(C), pages 104-116.
    18. Thiébaut, Maxime & Filipot, Jean-François & Maisondieu, Christophe & Damblans, Guillaume & Duarte, Rui & Droniou, Eloi & Chaplain, Nicolas & Guillou, Sylvain, 2020. "A comprehensive assessment of turbulence at a tidal-stream energy site influenced by wind-generated ocean waves," Energy, Elsevier, vol. 191(C).
    19. Liu, Xiaodong & Feng, Bo & Liu, Di & Wang, Yiming & Zhao, Haitao & Si, Yulin & Zhang, Dahai & Qian, Peng, 2022. "Study on two-rotor interaction of counter-rotating horizontal axis tidal turbine," Energy, Elsevier, vol. 241(C).
    20. Allmark, Matthew & Ellis, Robert & Lloyd, Catherine & Ordonez-Sanchez, Stephanie & Johannesen, Kate & Byrne, Carl & Johnstone, Cameron & O’Doherty, Tim & Mason-Jones, Allan, 2020. "The development, design and characterisation of a scale model Horizontal Axis Tidal Turbine for dynamic load quantification," Renewable Energy, Elsevier, vol. 156(C), pages 913-930.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:181:y:2022:i:c:p:1062-1080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.