IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v171y2021icp687-708.html
   My bibliography  Save this article

Advancement of an analytical double-Gaussian full wind turbine wake model

Author

Listed:
  • Keane, Aidan

Abstract

A recently proposed analytical wake model for a horizontal axis utility scale wind turbine is revisited, and revised and improved. The model is based upon conservation of momentum in the context of actuator disc theory, and the assumption of a distribution of the double-Gaussian type for the velocity deficit in the wake. The model is developed and improved and reveals characteristics of the wind turbine wake velocity deficit for the full wake, including the near-wake to within close proximity of the wind turbine rotor. Full 2-dimensional model fitting to lidar wake measurement data obtained from a 5 MW utility scale wind turbine is carried out for the full range of inflow wind velocities of primary interest. Such a full wind turbine wake model has the potential to facilitate analytic calculations within the wind turbine wake region, and the potential to improve understanding of wind turbine aerodynamics.

Suggested Citation

  • Keane, Aidan, 2021. "Advancement of an analytical double-Gaussian full wind turbine wake model," Renewable Energy, Elsevier, vol. 171(C), pages 687-708.
  • Handle: RePEc:eee:renene:v:171:y:2021:i:c:p:687-708
    DOI: 10.1016/j.renene.2021.02.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121002536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.02.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo-Wei Qian & Takeshi Ishihara, 2018. "A New Analytical Wake Model for Yawed Wind Turbines," Energies, MDPI, vol. 11(3), pages 1-24, March.
    2. Amin Niayifar & Fernando Porté-Agel, 2016. "Analytical Modeling of Wind Farms: A New Approach for Power Prediction," Energies, MDPI, vol. 9(9), pages 1-13, September.
    3. Göçmen, Tuhfe & Laan, Paul van der & Réthoré, Pierre-Elouan & Diaz, Alfredo Peña & Larsen, Gunner Chr. & Ott, Søren, 2016. "Wind turbine wake models developed at the technical university of Denmark: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 752-769.
    4. Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Shaohai & Gao, Xiaoxia & Ma, Wanli & Lu, Hongkun & Lv, Tao & Xu, Shinai & Zhu, Xiaoxun & Sun, Haiying & Wang, Yu, 2023. "Derivation and verification of three-dimensional wake model of multiple wind turbines based on super-Gaussian function," Renewable Energy, Elsevier, vol. 215(C).
    2. Wang, Yu & Wei, Shanbi & Yang, Wei & Chai, Yi, 2023. "Adaptive economic predictive control for offshore wind farm active yaw considering generation uncertainty," Applied Energy, Elsevier, vol. 351(C).
    3. Sadek, Zein & Scott, Ryan & Hamilton, Nicholas & Cal, Raúl Bayoán, 2023. "A three-dimensional, analytical wind turbine wake model: Flow acceleration, empirical correlations, and continuity," Renewable Energy, Elsevier, vol. 209(C), pages 298-309.
    4. Liu, Haixiao & Fu, Jianing & Liang, Zetao & Liang, Zhichang & Zhang, Yuming & Xiao, Zhong, 2022. "A simple method of fast evaluating full-field wake velocities for arbitrary wind turbine arrays on complex terrains," Renewable Energy, Elsevier, vol. 201(P1), pages 961-976.
    5. Gao, Xiaoxia & Zhang, Shaohai & Li, Luqing & Xu, Shinai & Chen, Yao & Zhu, Xiaoxun & Sun, Haiying & Wang, Yu & Lu, Hao, 2022. "Quantification of 3D spatiotemporal inhomogeneity for wake characteristics with validations from field measurement and wind tunnel test," Energy, Elsevier, vol. 254(PA).
    6. González-Hernández, José Genaro & Salas-Cabrera, Rubén & Vázquez-Bautista, Roberto & Ong-de-la-Cruz, Luis Manuel & Rodríguez-Guillén, Joel, 2021. "A novel MPPT PI discrete reverse-acting controller for a wind energy conversion system," Renewable Energy, Elsevier, vol. 178(C), pages 904-915.
    7. Wei Li & Shinai Xu & Baiyun Qian & Xiaoxia Gao & Xiaoxun Zhu & Zeqi Shi & Wei Liu & Qiaoliang Hu, 2022. "Large-Scale Wind Turbine’s Load Characteristics Excited by the Wind and Grid in Complex Terrain: A Review," Sustainability, MDPI, vol. 14(24), pages 1-29, December.
    8. Zhu, Xiaoxun & Chen, Yao & Xu, Shinai & Zhang, Shaohai & Gao, Xiaoxia & Sun, Haiying & Wang, Yu & Zhao, Fei & Lv, Tiancheng, 2023. "Three-dimensional non-uniform full wake characteristics for yawed wind turbine with LiDAR-based experimental verification," Energy, Elsevier, vol. 270(C).
    9. Dongqin Zhang & Yang Liang & Chao Li & Yiqing Xiao & Gang Hu, 2022. "Applicability of Wake Models to Predictions of Turbine-Induced Velocity Deficit and Wind Farm Power Generation," Energies, MDPI, vol. 15(19), pages 1-26, October.
    10. Zhou, Huanyu & Qiu, Yingning & Feng, Yanhui & Liu, Jing, 2022. "Power prediction of wind turbine in the wake using hybrid physical process and machine learning models," Renewable Energy, Elsevier, vol. 198(C), pages 568-586.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziyu Zhang & Peng Huang & Haocheng Sun, 2020. "A Novel Analytical Wake Model with a Cosine-Shaped Velocity Deficit," Energies, MDPI, vol. 13(13), pages 1-20, June.
    2. Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
    3. Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
    4. Hegazy, Amr & Blondel, Frédéric & Cathelain, Marie & Aubrun, Sandrine, 2022. "LiDAR and SCADA data processing for interacting wind turbine wakes with comparison to analytical wake models," Renewable Energy, Elsevier, vol. 181(C), pages 457-471.
    5. Dhiman, Harsh S. & Deb, Dipankar & Foley, Aoife M., 2020. "Lidar assisted wake redirection in wind farms: A data driven approach," Renewable Energy, Elsevier, vol. 152(C), pages 484-493.
    6. Jian Teng & Corey D. Markfort, 2020. "A Calibration Procedure for an Analytical Wake Model Using Wind Farm Operational Data," Energies, MDPI, vol. 13(14), pages 1-19, July.
    7. Jirarote Buranarote & Yutaka Hara & Masaru Furukawa & Yoshifumi Jodai, 2022. "Method to Predict Outputs of Two-Dimensional VAWT Rotors by Using Wake Model Mimicking the CFD-Created Flow Field," Energies, MDPI, vol. 15(14), pages 1-29, July.
    8. Matthias Ritter & Simone Pieralli & Martin Odening, 2017. "Neighborhood Effects in Wind Farm Performance: A Regression Approach," Energies, MDPI, vol. 10(3), pages 1-16, March.
    9. Syed Ahmed Kabir, Ijaz Fazil & Safiyullah, Ferozkhan & Ng, E.Y.K. & Tam, Vivian W.Y., 2020. "New analytical wake models based on artificial intelligence and rivalling the benchmark full-rotor CFD predictions under both uniform and ABL inflows," Energy, Elsevier, vol. 193(C).
    10. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    11. Ge, Mingwei & Wu, Ying & Liu, Yongqian & Li, Qi, 2019. "A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes," Applied Energy, Elsevier, vol. 233, pages 975-984.
    12. Razi, P. & Ramaprabhu, P. & Tarey, P. & Muglia, M. & Vermillion, C., 2022. "A low-order wake interaction modeling framework for the performance of ocean current turbines under turbulent conditions," Renewable Energy, Elsevier, vol. 200(C), pages 1602-1617.
    13. Kyoungboo Yang, 2020. "Determining an Appropriate Parameter of Analytical Wake Models for Energy Capture and Layout Optimization on Wind Farms," Energies, MDPI, vol. 13(3), pages 1-17, February.
    14. Li, Xuyang & Qiu, Yingning & Feng, Yanhui & Wang, Zheng, 2021. "Wind turbine power prediction considering wake effects with dual laser beam LiDAR measured yaw misalignment," Applied Energy, Elsevier, vol. 299(C).
    15. Wu, Chutian & Yang, Xiaolei & Zhu, Yaxin, 2021. "On the design of potential turbine positions for physics-informed optimization of wind farm layout," Renewable Energy, Elsevier, vol. 164(C), pages 1108-1120.
    16. Mingqiu Liu & Zhichang Liang & Haixiao Liu, 2022. "Numerical Investigations of Wake Expansion in the Offshore Wind Farm Using a Large Eddy Simulation," Energies, MDPI, vol. 15(6), pages 1-19, March.
    17. Yang, Shanghui & Deng, Xiaowei & Ti, Zilong & Yan, Bowen & Yang, Qingshan, 2022. "Cooperative yaw control of wind farm using a double-layer machine learning framework," Renewable Energy, Elsevier, vol. 193(C), pages 519-537.
    18. Zhu, Xiaoxun & Chen, Yao & Xu, Shinai & Zhang, Shaohai & Gao, Xiaoxia & Sun, Haiying & Wang, Yu & Zhao, Fei & Lv, Tiancheng, 2023. "Three-dimensional non-uniform full wake characteristics for yawed wind turbine with LiDAR-based experimental verification," Energy, Elsevier, vol. 270(C).
    19. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
    20. Zhang, Jincheng & Zhao, Xiaowei, 2020. "Quantification of parameter uncertainty in wind farm wake modeling," Energy, Elsevier, vol. 196(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:171:y:2021:i:c:p:687-708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.