IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224006157.html
   My bibliography  Save this article

Quantification of three-dimensional added turbulence intensity for the horizontal-axis wind turbine considering the wake anisotropy

Author

Listed:
  • Zhang, Shaohai
  • Duan, Huanfeng
  • Lu, Lin
  • He, Ruiyang
  • Gao, Xiaoxia
  • Zhu, Songye

Abstract

The accurate evaluation of wake turbulence intensity (TI) is of great significance for the layout optimization of wind farms and research on control strategies. However, the existing engineering wake models still have many shortcomings in evaluating the TI in the wake of horizontal-axis wind turbines (HAWTs), especially in the near wake region. In response to this, this article proposed an analytical model based on the double-Gaussian ellipse function that can describe the three-dimensional added TI distribution in the entire wake region. Firstly, the anisotropy of wake expansion is taken into account in both the horizontal and vertical directions, assuming that the added TI distribution downstream of the HAWT is a double-Gaussian elliptical shape. Secondly, taking into account the self-similarity characteristics of flow TI, the maximum added TI and its position in the entire wake region are evaluated. In addition, considering the influence of the ground effect, the vertical turbulence distribution was corrected. Finally, the proposed added turbulence model was validated and relative error analysis was conducted using large eddy simulation (LES) data, wind field measurement data, and wind tunnel experimental data. The results show that the model had good prediction accuracy in the entire wake region, and its prediction performance was significantly improved compared to traditional models, especially in the near wake region, with the lowest even relative error of 3.66%. This model has significant advantages such as low computational cost, wide applicability, and high accuracy. It can reduce energy losses in wind farms, improve wind energy utilization efficiency, and has great potential for widespread application in large-scale wind farms.

Suggested Citation

  • Zhang, Shaohai & Duan, Huanfeng & Lu, Lin & He, Ruiyang & Gao, Xiaoxia & Zhu, Songye, 2024. "Quantification of three-dimensional added turbulence intensity for the horizontal-axis wind turbine considering the wake anisotropy," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006157
    DOI: 10.1016/j.energy.2024.130843
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224006157
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.