IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v85y2016icp620-630.html
   My bibliography  Save this article

Coordinated generation and transmission expansion planning in deregulated electricity market considering wind farms

Author

Listed:
  • Hemmati, Reza
  • Hooshmand, Rahmat-Allah
  • Khodabakhshian, Amin

Abstract

This paper deals with a coordinated generation expansion planning (GEP)–transmission expansion planning (TEP) in competitive electricity market. In the proposed method, GEP and TEP are performed at the same time, with consideration of wind farm uncertainty. The uncertainty is modeled by normal probability distribution function (PDF) and Monte-Carlo simulation (MCS) is used to include the uncertainty into the problem. The planning is managed for two master and slave levels. At slave level, all generation company (GENCO) and transmission company (TRANSCO) maximize their profit and then at master level, the system constraints are checked by independent system operator (ISO). In other words, the proposed planning aims at maximizing the expected profit of all GENCOs and TRANSCOs, while considering security and reliability constraints such as reserve margin and loss of load expectation (LOLE). The proposed problem is a constrained, nonlinear, mixed-integer optimization programming and solved by using particle swarm optimization (PSO) method. Simulation results verify the effectiveness and validity of the proposed planning for maximizing GENCOs and TRANSCOs profit in the presence of wind farm uncertainty under electricity market.

Suggested Citation

  • Hemmati, Reza & Hooshmand, Rahmat-Allah & Khodabakhshian, Amin, 2016. "Coordinated generation and transmission expansion planning in deregulated electricity market considering wind farms," Renewable Energy, Elsevier, vol. 85(C), pages 620-630.
  • Handle: RePEc:eee:renene:v:85:y:2016:i:c:p:620-630
    DOI: 10.1016/j.renene.2015.07.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115301142
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.07.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hemmati, Reza & Hooshmand, Rahmat-Allah & Khodabakhshian, Amin, 2013. "State-of-the-art of transmission expansion planning: Comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 312-319.
    2. Cadini, F. & Zio, E. & Petrescu, C.A., 2010. "Optimal expansion of an existing electrical power transmission network by multi-objective genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 173-181.
    3. Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
    4. Hemmati, Reza & Hooshmand, Rahmat-Allah & Khodabakhshian, Amin, 2014. "Market based transmission expansion and reactive power planning with consideration of wind and load uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 1-10.
    5. Kern, Jordan D. & Patino-Echeverri, Dalia & Characklis, Gregory W., 2014. "An integrated reservoir-power system model for evaluating the impacts of wind integration on hydropower resources," Renewable Energy, Elsevier, vol. 71(C), pages 553-562.
    6. Platero, C.A. & Nicolet, C. & Sánchez, J.A. & Kawkabani, B., 2014. "Increasing wind power penetration in autonomous power systems through no-flow operation of Pelton turbines," Renewable Energy, Elsevier, vol. 68(C), pages 515-523.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Yiping & Sansavini, Giovanni, 2017. "Optimizing power system investments and resilience against attacks," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 161-173.
    2. Jordehi, A. Rezaee, 2015. "Particle swarm optimisation (PSO) for allocation of FACTS devices in electric transmission systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1260-1267.
    3. Zhu, Huaxing & Zhang, Chi, 2019. "Expanding a complex networked system for enhancing its reliability evaluated by a new efficient approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 205-220.
    4. Fitiwi, Desta Z. & de Cuadra, F. & Olmos, L. & Rivier, M., 2015. "A new approach of clustering operational states for power network expansion planning problems dealing with RES (renewable energy source) generation operational variability and uncertainty," Energy, Elsevier, vol. 90(P2), pages 1360-1376.
    5. Hemmati, Reza & Saboori, Hedayat & Jirdehi, Mehdi Ahmadi, 2016. "Multistage generation expansion planning incorporating large scale energy storage systems and environmental pollution," Renewable Energy, Elsevier, vol. 97(C), pages 636-645.
    6. Zolfaghari, Saeed & Akbari, Tohid, 2018. "Bilevel transmission expansion planning using second-order cone programming considering wind investment," Energy, Elsevier, vol. 154(C), pages 455-465.
    7. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    8. Faezeh Akhavizadegan & Lizhi Wang & James McCalley, 2020. "Scenario Selection for Iterative Stochastic Transmission Expansion Planning," Energies, MDPI, vol. 13(5), pages 1-18, March.
    9. Sarlak, H. & Meneveau, C. & Sørensen, J.N., 2015. "Role of subgrid-scale modeling in large eddy simulation of wind turbine wake interactions," Renewable Energy, Elsevier, vol. 77(C), pages 386-399.
    10. Nicolas Tobin & Ali M. Hamed & Leonardo P. Chamorro, 2015. "An Experimental Study on the Effects ofWinglets on the Wake and Performance of a ModelWind Turbine," Energies, MDPI, vol. 8(10), pages 1-18, October.
    11. Li, Siyi & Zhang, Mingrui & Piggott, Matthew D., 2023. "End-to-end wind turbine wake modelling with deep graph representation learning," Applied Energy, Elsevier, vol. 339(C).
    12. Kishore, T.S. & Singal, S.K., 2014. "Optimal economic planning of power transmission lines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 949-974.
    13. Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
    14. Siyu Tao & Andrés Feijóo & Jiemin Zhou & Gang Zheng, 2020. "Topology Design of an Offshore Wind Farm with Multiple Types of Wind Turbines in a Circular Layout," Energies, MDPI, vol. 13(3), pages 1-16, January.
    15. Zilong, Ti & Xiao Wei, Deng, 2022. "Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads," Applied Energy, Elsevier, vol. 306(PA).
    16. Lam, H.F. & Peng, H.Y., 2016. "Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations," Renewable Energy, Elsevier, vol. 90(C), pages 386-398.
    17. José Ignacio Sarasúa & Guillermo Martínez-Lucas & Carlos A. Platero & José Ángel Sánchez-Fernández, 2018. "Dual Frequency Regulation in Pumping Mode in a Wind–Hydro Isolated System," Energies, MDPI, vol. 11(11), pages 1-17, October.
    18. Su, Yufei & Kern, Jordan D. & Characklis, Gregory W., 2017. "The impact of wind power growth and hydrological uncertainty on financial losses from oversupply events in hydropower-dominated systems," Applied Energy, Elsevier, vol. 194(C), pages 172-183.
    19. Sun, Haiying & Yang, Hongxing, 2020. "Numerical investigation of the average wind speed of a single wind turbine and development of a novel three-dimensional multiple wind turbine wake model," Renewable Energy, Elsevier, vol. 147(P1), pages 192-203.
    20. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2011. "Maximal network reliability for a stochastic power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1332-1339.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:85:y:2016:i:c:p:620-630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.