IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v246y2025ics0960148125005403.html
   My bibliography  Save this article

Layout optimization for offshore wind farms considering both fatigue damage and power generation

Author

Listed:
  • Peng, Wangxuan
  • Li, Baoliang
  • Ge, Mingwei
  • Li, Xintao
  • Ding, Wei
  • Li, Bo

Abstract

Fatigue damage is a crucial factor affecting the lifespan and reliability of wind turbines. However, this factor is seldom considered in the phase of wind farm layout optimization (WFLO). This oversight can lead to increased operating and maintenance costs, especially for offshore wind farms. To fill this technical gap, a multi-objective WFLO framework considering both fatigue damage and power generation is proposed. Via analytical wake models of wind speed and turbulence, the fatigue damage of each turbine can be rapidly evaluated accounting for both power production and wake turbulence. Typically, the Horns Rev wind farm is taken as a benchmark, and two indicators of fatigue damage, the maximum (Fmax) and mean (Fmean) fatigue damage of all turbines, are considered in WFLO, respectively. The optimized layouts can achieve an increase in total power generation of over 2 % compared to the original layout, while reducing fatigue damage by about 1 %. Moreover, compared to single-objective WFLO focused solely on power generation, the multi-objective approach achieves a reduction of about 3.2 % in Fmax, while maintaining a comparable power output level. Further investigation shows that the indicator of Fmax in WFLO performs better to effectively reduce and balance the fatigue damage of all turbines.

Suggested Citation

  • Peng, Wangxuan & Li, Baoliang & Ge, Mingwei & Li, Xintao & Ding, Wei & Li, Bo, 2025. "Layout optimization for offshore wind farms considering both fatigue damage and power generation," Renewable Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005403
    DOI: 10.1016/j.renene.2025.122878
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125005403
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122878?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.