IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224038283.html
   My bibliography  Save this article

Reinforcement learning-based particle swarm optimization for wind farm layout problems

Author

Listed:
  • Zhang, Zihang
  • Li, Jiayi
  • Lei, Zhenyu
  • Zhu, Qianyu
  • Cheng, Jiujun
  • Gao, Shangce

Abstract

Optimizing wind farm layouts is critical to maximizing wind power generation. The wake effect significantly impacts turbines located downwind, making farm layout a key determinant of power generation efficiency. Traditional algorithms often overlook the value of leveraging historical information, which can lead to entrapment in local optima. Our survey reveals that previous studies on wind farm layout optimization (WFLO) have not adequately integrated the historical data of particle swarm optimization (PSO) with reinforcement learning’s empirical pool, resulting in the loss of valuable information. Here, we present a novel approach that enhances algorithm development and exploration by utilizing historical data and integrating proximal policy optimization from reinforcement learning with an experience pool. This method markedly outperforms the conventional genetic PSO in terms of performance. Extensive numerical experiments across wind farms of various sizes and four distinct wind scenarios demonstrate the superior efficacy of our reinforcement learning-based particle swarm optimization (RPSO) algorithm compared to 12 state-of-the-art methods. Under four wind scenarios, the average power conversion efficiencies of RPSO for the three turbine scales reach 98.68%, 98.14%, and 97.33%, respectively, underscoring the high competitiveness of the proposed RPSO for WFLO in diverse wind conditions.

Suggested Citation

  • Zhang, Zihang & Li, Jiayi & Lei, Zhenyu & Zhu, Qianyu & Cheng, Jiujun & Gao, Shangce, 2024. "Reinforcement learning-based particle swarm optimization for wind farm layout problems," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038283
    DOI: 10.1016/j.energy.2024.134050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224038283
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emami, Alireza & Noghreh, Pirooz, 2010. "New approach on optimization in placement of wind turbines within wind farm by genetic algorithms," Renewable Energy, Elsevier, vol. 35(7), pages 1559-1564.
    2. Pookpunt, Sittichoke & Ongsakul, Weerakorn, 2013. "Optimal placement of wind turbines within wind farm using binary particle swarm optimization with time-varying acceleration coefficients," Renewable Energy, Elsevier, vol. 55(C), pages 266-276.
    3. Marmidis, Grigorios & Lazarou, Stavros & Pyrgioti, Eleftheria, 2008. "Optimal placement of wind turbines in a wind park using Monte Carlo simulation," Renewable Energy, Elsevier, vol. 33(7), pages 1455-1460.
    4. Zhao, Xiaohuan & E, Jiaqiang & Zhang, Zhiqing & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Leng, Erwei & Han, Dandan & Hu, Wenyu, 2020. "A review on heat enhancement in thermal energy conversion and management using Field Synergy Principle," Applied Energy, Elsevier, vol. 257(C).
    5. Grady, S.A. & Hussaini, M.Y. & Abdullah, M.M., 2005. "Placement of wind turbines using genetic algorithms," Renewable Energy, Elsevier, vol. 30(2), pages 259-270.
    6. Archer, Cristina L. & Vasel-Be-Hagh, Ahmadreza & Yan, Chi & Wu, Sicheng & Pan, Yang & Brodie, Joseph F. & Maguire, A. Eoghan, 2018. "Review and evaluation of wake loss models for wind energy applications," Applied Energy, Elsevier, vol. 226(C), pages 1187-1207.
    7. Dong, Hongyang & Zhang, Jincheng & Zhao, Xiaowei, 2021. "Intelligent wind farm control via deep reinforcement learning and high-fidelity simulations," Applied Energy, Elsevier, vol. 292(C).
    8. Neshat, Mehdi & Sergiienko, Nataliia Y. & Nezhad, Meysam Majidi & da Silva, Leandro S.P. & Amini, Erfan & Marsooli, Reza & Astiaso Garcia, Davide & Mirjalili, Seyedali, 2024. "Enhancing the performance of hybrid wave-wind energy systems through a fast and adaptive chaotic multi-objective swarm optimisation method," Applied Energy, Elsevier, vol. 362(C).
    9. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico & Ault, Graham & Bell, Keith, 2013. "Reinforcement learning for microgrid energy management," Energy, Elsevier, vol. 59(C), pages 133-146.
    10. Feng, Ju & Shen, Wen Zhong, 2015. "Solving the wind farm layout optimization problem using random search algorithm," Renewable Energy, Elsevier, vol. 78(C), pages 182-192.
    11. Yu, Xiaobing & Lu, Yangchen, 2023. "Reinforcement learning-based multi-objective differential evolution for wind farm layout optimization," Energy, Elsevier, vol. 284(C).
    12. Ju, Xinglong & Liu, Feng, 2019. "Wind farm layout optimization using self-informed genetic algorithm with information guided exploitation," Applied Energy, Elsevier, vol. 248(C), pages 429-445.
    13. Kadri, Ameni & Marzougui, Hajer & Aouiti, Abdelkrim & Bacha, Faouzi, 2020. "Energy management and control strategy for a DFIG wind turbine/fuel cell hybrid system with super capacitor storage system," Energy, Elsevier, vol. 192(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borui Zhang & Bo Liu, 2025. "An Adaptive Scheduling Method for Standalone Microgrids Based on Deep Q-Network and Particle Swarm Optimization," Energies, MDPI, vol. 18(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    3. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
    4. Ulku, I. & Alabas-Uslu, C., 2019. "A new mathematical programming approach to wind farm layout problem under multiple wake effects," Renewable Energy, Elsevier, vol. 136(C), pages 1190-1201.
    5. Wu, Chutian & Yang, Xiaolei & Zhu, Yaxin, 2021. "On the design of potential turbine positions for physics-informed optimization of wind farm layout," Renewable Energy, Elsevier, vol. 164(C), pages 1108-1120.
    6. Dinçer, A.E. & Demir, A. & Yılmaz, K., 2024. "Multi-objective turbine allocation on a wind farm site," Applied Energy, Elsevier, vol. 355(C).
    7. Yang, Kyoungboo & Kwak, Gyeongil & Cho, Kyungho & Huh, Jongchul, 2019. "Wind farm layout optimization for wake effect uniformity," Energy, Elsevier, vol. 183(C), pages 983-995.
    8. Biswas, Partha P. & Suganthan, P.N. & Amaratunga, Gehan A.J., 2018. "Decomposition based multi-objective evolutionary algorithm for windfarm layout optimization," Renewable Energy, Elsevier, vol. 115(C), pages 326-337.
    9. Hou, Peng & Hu, Weihao & Chen, Cong & Soltani, Mohsen & Chen, Zhe, 2016. "Optimization of offshore wind farm layout in restricted zones," Energy, Elsevier, vol. 113(C), pages 487-496.
    10. Abdelsalam, Ali M. & El-Shorbagy, M.A., 2018. "Optimization of wind turbines siting in a wind farm using genetic algorithm based local search," Renewable Energy, Elsevier, vol. 123(C), pages 748-755.
    11. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2016. "Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model," Applied Energy, Elsevier, vol. 174(C), pages 192-200.
    12. Ma, Xiaojuan & Wu, Xinghong & Wu, Yan & Wang, Yufei, 2023. "Energy system design of offshore natural gas hydrates mining platforms considering multi-period floating wind farm optimization and production profile fluctuation," Energy, Elsevier, vol. 265(C).
    13. Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2020. "Optimal design of wind farms in complex terrains using computational fluid dynamics and adjoint methods," Applied Energy, Elsevier, vol. 261(C).
    14. Lo Brutto, Ottavio A. & Nguyen, Van Thinh & Guillou, Sylvain S. & Thiébot, Jérôme & Gualous, Hamid, 2016. "Tidal farm analysis using an analytical model for the flow velocity prediction in the wake of a tidal turbine with small diameter to depth ratio," Renewable Energy, Elsevier, vol. 99(C), pages 347-359.
    15. Dhunny, A.Z. & Allam, Z. & Lobine, D. & Lollchund, M.R., 2019. "Sustainable renewable energy planning and wind farming optimization from a biodiversity perspective," Energy, Elsevier, vol. 185(C), pages 1282-1297.
    16. Wahiba El Mestari & Nawal Cheggaga & Feriel Adli & Abdellah Benallal & Adrian Ilinca, 2025. "Tuning Parameters of Genetic Algorithms for Wind Farm Optimization Using the Design of Experiments Method," Sustainability, MDPI, vol. 17(7), pages 1-20, March.
    17. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Investigation into the optimal wind turbine layout patterns for a Hong Kong offshore wind farm," Energy, Elsevier, vol. 73(C), pages 430-442.
    18. Hou, Peng & Hu, Weihao & Soltani, Mohsen & Chen, Cong & Chen, Zhe, 2017. "Combined optimization for offshore wind turbine micro siting," Applied Energy, Elsevier, vol. 189(C), pages 271-282.
    19. Nagpal, Shriya V. & Liu, M. Vivienne & Anderson, C. Lindsay, 2021. "A comparison of deterministic refinement techniques for wind farm layout optimization," Renewable Energy, Elsevier, vol. 168(C), pages 581-592.
    20. Muhammad Nabeel Hussain & Nadeem Shaukat & Ammar Ahmad & Muhammad Abid & Abrar Hashmi & Zohreh Rajabi & Muhammad Atiq Ur Rehman Tariq, 2022. "Effective Realization of Multi-Objective Elitist Teaching–Learning Based Optimization Technique for the Micro-Siting of Wind Turbines," Sustainability, MDPI, vol. 14(14), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.