IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225002580.html
   My bibliography  Save this article

A moving window method for time series optimisation, with applications to energy storage and hydrogen production

Author

Listed:
  • Green, Dylan S.S.
  • Klimenko, Alexander Y.

Abstract

Temporal decomposition methods aim to solve optimisation problems by converting one problem over a large time series into a series of subproblems over shorter time series. This paper introduces one such method where subproblems are defined over a window that moves back and forth repeatedly over the length of the large time series, creating a convergent sequence of solutions and mitigating some of the boundary considerations prevalent in other temporal decomposition methods. To illustrate this moving window method, it is applied to two models: an energy storage facility trading electricity in a market; and a hydrogen electrolyser powered by renewable electricity produced and potentially stored onsite. The method is simple to implement and it is found that for large optimisation problems, it consistently requires less computation time than the base optimisation algorithm used in this study (by factors up to 100 times). In addition, it is analytically demonstrated that decomposition methods in which a minimum is attained for each subproblem need not attain a minimum for the overall problem.

Suggested Citation

  • Green, Dylan S.S. & Klimenko, Alexander Y., 2025. "A moving window method for time series optimisation, with applications to energy storage and hydrogen production," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225002580
    DOI: 10.1016/j.energy.2025.134616
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225002580
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134616?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Brayshaw, David James & Troccoli, Alberto & Fordham, Rachael & Methven, John, 2011. "The impact of large scale atmospheric circulation patterns on wind power generation and its potential predictability: A case study over the UK," Renewable Energy, Elsevier, vol. 36(8), pages 2087-2096.
    2. Moradi, Mohammad Hossein & Widmer, Fabio & Turin, Raymond C. & Onder, Christopher H., 2024. "Optimization of charging infrastructure and strategy for an electrified public transportation system," Energy, Elsevier, vol. 313(C).
    3. Swisher, Philip & Murcia Leon, Juan Pablo & Gea-Bermúdez, Juan & Koivisto, Matti & Madsen, Helge Aagaard & Münster, Marie, 2022. "Competitiveness of a low specific power, low cut-out wind speed wind turbine in North and Central Europe towards 2050," Applied Energy, Elsevier, vol. 306(PB).
    4. Rintamäki, Tuomas & Siddiqui, Afzal S. & Salo, Ahti, 2017. "Does renewable energy generation decrease the volatility of electricity prices? An analysis of Denmark and Germany," Energy Economics, Elsevier, vol. 62(C), pages 270-282.
    5. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Martinez Lopez, V.A. & Ziar, H. & Haverkort, J.W. & Zeman, M. & Isabella, O., 2023. "Dynamic operation of water electrolyzers: A review for applications in photovoltaic systems integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    7. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2022. "The role of electricity flows and renewable electricity production in the behaviour of electricity prices in Spain," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 885-900.
    8. Qiyuan Peng & Jun Zhao & Chao Wen, 2013. "A rolling horizon-based decomposition algorithm for the railway network train timetabling problem," International Journal of Rail Transportation, Taylor & Francis Journals, vol. 1(3), pages 129-160, August.
    9. Zhang, Zihang & Li, Jiayi & Lei, Zhenyu & Zhu, Qianyu & Cheng, Jiujun & Gao, Shangce, 2024. "Reinforcement learning-based particle swarm optimization for wind farm layout problems," Energy, Elsevier, vol. 313(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosius, Emil & Seebaß, Johann V. & Wacker, Benjamin & Schlüter, Jan Chr., 2023. "The impact of offshore wind energy on Northern European wholesale electricity prices," Applied Energy, Elsevier, vol. 341(C).
    2. Kerschbaum, Alina & Trentmann, Lennart & Hanel, Andreas & Fendt, Sebastian & Spliethoff, Hartmut, 2025. "Methods for analysing renewable energy potentials in energy system modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    3. Bracken, Cameron & Voisin, Nathalie & Burleyson, Casey D. & Campbell, Allison M. & Hou, Z. Jason & Broman, Daniel, 2024. "Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States," Renewable Energy, Elsevier, vol. 220(C).
    4. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "The impact of the North Atlantic Oscillation on electricity markets: A case study on Ireland," Energy Economics, Elsevier, vol. 58(C), pages 186-198.
    5. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Konstandatos, Otto & Rai, Alan, 2021. "Wind generation and the dynamics of electricity prices in Australia," Energy Economics, Elsevier, vol. 103(C).
    7. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    8. Cannon, D.J. & Brayshaw, D.J. & Methven, J. & Coker, P.J. & Lenaghan, D., 2015. "Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain," Renewable Energy, Elsevier, vol. 75(C), pages 767-778.
    9. Lu, Ye & Suthaharan, Neyavan, 2023. "Electricity price spike clustering: A zero-inflated GARX approach," Energy Economics, Elsevier, vol. 124(C).
    10. Bell, William Paul & Wild, Phillip & Foster, John & Hewson, Michael, 2017. "Revitalising the wind power induced merit order effect to reduce wholesale and retail electricity prices in Australia," Energy Economics, Elsevier, vol. 67(C), pages 224-241.
    11. Ohba, Masamichi & Kadokura, Shinji & Nohara, Daisuke, 2016. "Impacts of synoptic circulation patterns on wind power ramp events in East Japan," Renewable Energy, Elsevier, vol. 96(PA), pages 591-602.
    12. Katarzyna Maciejowska, 2022. "A portfolio management of a small RES utility with a Structural Vector Autoregressive model of German electricity markets," Papers 2205.00975, arXiv.org.
    13. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    14. Thomas Baldauf & Patrick Jochem, 2024. "Project finance or corporate finance for renewable energy? an agent-based insight," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 19(4), pages 759-805, October.
    15. Bert Willems & Juulia Zhou, 2020. "The Clean Energy Package and Demand Response: Setting Correct Incentives," Energies, MDPI, vol. 13(21), pages 1-19, October.
    16. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
    17. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Rai, Alan & Konstandatos, Otto, 2022. "Large-scale and rooftop solar generation in the NEM: A tale of two renewables strategies," Energy Economics, Elsevier, vol. 115(C).
    18. Russo, Marianna & Kraft, Emil & Bertsch, Valentin & Keles, Dogan, 2022. "Short-term risk management of electricity retailers under rising shares of decentralized solar generation," Energy Economics, Elsevier, vol. 109(C).
    19. Lei, Hongxuan & Liu, Pan & Cheng, Qian & Xu, Huan & Liu, Weibo & Zheng, Yalian & Chen, Xiangding & Zhou, Yong, 2024. "Frequency, duration, severity of energy drought and its propagation in hydro-wind-photovoltaic complementary systems," Renewable Energy, Elsevier, vol. 230(C).
    20. Tselika, Kyriaki & Tselika, Maria & Demetriades, Elias, 2024. "Quantifying the short-term asymmetric effects of renewable energy on the electricity merit-order curve," Energy Economics, Elsevier, vol. 132(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225002580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.