IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2897-d1669721.html
   My bibliography  Save this article

Adaptive Multitask Neural Network for High-Fidelity Wake Flow Modeling of Wind Farms

Author

Listed:
  • Dichang Zhang

    (Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA)

  • Christian Santoni

    (Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, USA)

  • Zexia Zhang

    (Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, USA)

  • Dimitris Samaras

    (Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA)

  • Ali Khosronejad

    (Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, USA)

Abstract

Wind turbine wake modeling is critical for the design and optimization of wind farms. Traditional methods often struggle with the trade-off between accuracy and computational cost. Recently, data-driven neural networks have emerged as a promising solution, offering both high fidelity and fast inference speeds. To advance this field, a novel machine learning model has been developed to predict wind farm mean flow fields through an adaptive multi-fidelity framework. This model extends transfer-learning-based high-dimensional multi-fidelity modeling to scenarios where varying fidelity levels correspond to distinct physical models, rather than merely differing grid resolutions. Built upon a U-Net architecture and incorporating a wind farm parameter encoder, our framework integrates high-fidelity large-eddy simulation (LES) data with a low-fidelity engineering wake model. By directly predicting time-averaged velocity fields from wind farm parameters, our approach eliminates the need for computationally expensive simulations during inference, achieving real-time performance ( 1.32 × 10 − 5 GPU hours per instance with negligible CPU workload). Comparisons against field-measured data demonstrate that the model accurately approximates high-fidelity LES predictions, even when trained with limited high-fidelity data. Furthermore, its end-to-end extensible design allows full differentiability and seamless integration of multiple fidelity levels, providing a versatile and scalable solution for various downstream tasks, including wind farm control co-design.

Suggested Citation

  • Dichang Zhang & Christian Santoni & Zexia Zhang & Dimitris Samaras & Ali Khosronejad, 2025. "Adaptive Multitask Neural Network for High-Fidelity Wake Flow Modeling of Wind Farms," Energies, MDPI, vol. 18(11), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2897-:d:1669721
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2897/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2897/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zexia Zhang & Christian Santoni & Thomas Herges & Fotis Sotiropoulos & Ali Khosronejad, 2021. "Time-Averaged Wind Turbine Wake Flow Field Prediction Using Autoencoder Convolutional Neural Networks," Energies, MDPI, vol. 15(1), pages 1-20, December.
    2. Fleming, Paul A. & Gebraad, Pieter M.O. & Lee, Sang & van Wingerden, Jan-Willem & Johnson, Kathryn & Churchfield, Matt & Michalakes, John & Spalart, Philippe & Moriarty, Patrick, 2014. "Evaluating techniques for redirecting turbine wakes using SOWFA," Renewable Energy, Elsevier, vol. 70(C), pages 211-218.
    3. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    4. Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
    5. José F. Herbert-Acero & Oliver Probst & Pierre-Elouan Réthoré & Gunner Chr. Larsen & Krystel K. Castillo-Villar, 2014. "A Review of Methodological Approaches for the Design and Optimization of Wind Farms," Energies, MDPI, vol. 7(11), pages 1-87, October.
    6. Christian Santoni & Fotis Sotiropoulos & Ali Khosronejad, 2024. "A Comparative Analysis of Actuator-Based Turbine Structure Parametrizations for High-Fidelity Modeling of Utility-Scale Wind Turbines under Neutral Atmospheric Conditions," Energies, MDPI, vol. 17(3), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yildiz, Anil & Mern, John & Kochenderfer, Mykel J. & Howland, Michael F., 2023. "Towards sequential sensor placements on a wind farm to maximize lifetime energy and profit," Renewable Energy, Elsevier, vol. 216(C).
    2. Tu, Yu & Chen, Yaoran & Zhang, Kai & He, Ruiyang & Han, Zhaolong & Zhou, Dai, 2025. "A multi-fidelity framework for power prediction of wind farm under yaw misalignment," Applied Energy, Elsevier, vol. 377(PC).
    3. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
    4. Abdelsalam, Ali M. & El-Shorbagy, M.A., 2018. "Optimization of wind turbines siting in a wind farm using genetic algorithm based local search," Renewable Energy, Elsevier, vol. 123(C), pages 748-755.
    5. Zhang, Jincheng & Zhao, Xiaowei, 2020. "Quantification of parameter uncertainty in wind farm wake modeling," Energy, Elsevier, vol. 196(C).
    6. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2021. "Wind Farm Area Shape Optimization Using Newly Developed Multi-Objective Evolutionary Algorithms," Energies, MDPI, vol. 14(14), pages 1-25, July.
    7. Eikrem, Kjersti Solberg & Lorentzen, Rolf Johan & Faria, Ricardo & Stordal, Andreas Størksen & Godard, Alexandre, 2023. "Offshore wind farm layout optimization using ensemble methods," Renewable Energy, Elsevier, vol. 216(C).
    8. Harsh S. Dhiman & Dipankar Deb & Vlad Muresan & Valentina E. Balas, 2019. "Wake Management in Wind Farms: An Adaptive Control Approach," Energies, MDPI, vol. 12(7), pages 1-18, April.
    9. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions," Applied Energy, Elsevier, vol. 242(C), pages 1383-1395.
    10. Parada, Leandro & Herrera, Carlos & Flores, Paulo & Parada, Victor, 2018. "Assessing the energy benefit of using a wind turbine micro-siting model," Renewable Energy, Elsevier, vol. 118(C), pages 591-601.
    11. Xiong, Xue-Lu & Lyu, Pin & Chen, Wen-Li & Li, Hui, 2020. "Self-similarity in the wake of a semi-submersible offshore wind turbine considering the interaction with the wake of supporting platform," Renewable Energy, Elsevier, vol. 156(C), pages 328-341.
    12. Guo-Wei Qian & Takeshi Ishihara, 2018. "A New Analytical Wake Model for Yawed Wind Turbines," Energies, MDPI, vol. 11(3), pages 1-24, March.
    13. Jia, Rui & Ge, Mingwei & Zhang, Ziliang & Li, Xintao & Du, Bowen, 2024. "A numerical simulation framework for wakes downstream of large wind farms based on equivalent roughness model," Energy, Elsevier, vol. 307(C).
    14. Abraham, Aliza & Hong, Jiarong, 2020. "Dynamic wake modulation induced by utility-scale wind turbine operation," Applied Energy, Elsevier, vol. 257(C).
    15. Shen, Wen Zhong & Lin, Jian Wei & Jiang, Yu Hang & Feng, Ju & Cheng, Li & Zhu, Wei Jun, 2023. "A novel yaw wake model for wind farm control applications," Renewable Energy, Elsevier, vol. 218(C).
    16. Yang, Haoze & Ge, Mingwei & Gu, Bo & Du, Bowen & Liu, Yongqian, 2022. "The effect of swell on marine atmospheric boundary layer and the operation of an offshore wind turbine," Energy, Elsevier, vol. 244(PB).
    17. Guirguis, David & Romero, David A. & Amon, Cristina H., 2016. "Toward efficient optimization of wind farm layouts: Utilizing exact gradient information," Applied Energy, Elsevier, vol. 179(C), pages 110-123.
    18. Mohammadreza Mohammadi & Majid Bastankhah & Paul Fleming & Matthew Churchfield & Ervin Bossanyi & Lars Landberg & Renzo Ruisi, 2022. "Curled-Skewed Wakes behind Yawed Wind Turbines Subject to Veered Inflow," Energies, MDPI, vol. 15(23), pages 1-16, December.
    19. Sun, Jili & Chen, Zheng & Yu, Hao & Gao, Shan & Wang, Bin & Ying, You & Sun, Yong & Qian, Peng & Zhang, Dahai & Si, Yulin, 2022. "Quantitative evaluation of yaw-misalignment and aerodynamic wake induced fatigue loads of offshore Wind turbines," Renewable Energy, Elsevier, vol. 199(C), pages 71-86.
    20. Mou Lin & Fernando Porté-Agel, 2019. "Large-Eddy Simulation of Yawed Wind-Turbine Wakes: Comparisons with Wind Tunnel Measurements and Analytical Wake Models," Energies, MDPI, vol. 12(23), pages 1-18, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2897-:d:1669721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.