IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224005449.html
   My bibliography  Save this article

A reduced order modeling-based machine learning approach for wind turbine wake flow estimation from sparse sensor measurements

Author

Listed:
  • Luo, Zhaohui
  • Wang, Longyan
  • Xu, Jian
  • Wang, Zilu
  • Yuan, Jianping
  • Tan, Andy C.C.

Abstract

A comprehensive understanding of wind turbine wake characteristics is vital, particularly in the context of expanding large offshore wind farms. Existing wake measurement techniques provide only spatially sparse wake measurement data, limiting their utility in precise wind turbine design and control. This paper introduces a data-driven approach that combines proper orthogonal decomposition (POD) with machine learning (ML) techniques, designing a Reduced Order Modeling-based Wake Flow Estimation (ROM-WFE) framework. This framework establishes a nonlinear mapping between sensor measurements and low-dimensional POD coefficients. Two distinct sensor placements, wall-mounted and wake-mounted, are investigated for real measurement scenarios. The results highlight the effectiveness of the proposed wake flow estimation method in reconstructing a complete flow field from exceptionally sparse sensor data, with both wall-mounted and wake-mounted strategies, exhibiting promising results with maximum relative errors of 6.37% and 4.51%, respectively. From the reliability assessments considering various configurations of POD modes and sensor numbers, the ROM-WFE framework demonstrates its capability to estimate wake flow effectively, offering a cost-effective tool for practical applications. Furthermore, the framework maintains accuracy even with high-noise and low-frequency data, demonstrating robustness and generalization. This method significantly contributes to wind turbine wake prediction controller design, promising accurate and robust wake flow field estimation, potentially revolutionizing active wake control and enhancing wind farm operational efficiency.

Suggested Citation

  • Luo, Zhaohui & Wang, Longyan & Xu, Jian & Wang, Zilu & Yuan, Jianping & Tan, Andy C.C., 2024. "A reduced order modeling-based machine learning approach for wind turbine wake flow estimation from sparse sensor measurements," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005449
    DOI: 10.1016/j.energy.2024.130772
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224005449
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130772?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.