IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v224y2024ics0960148124002441.html
   My bibliography  Save this article

DLFSI: A deep learning static fluid-structure interaction model for hydrodynamic-structural optimization of composite tidal turbine blade

Author

Listed:
  • Xu, Jian
  • Wang, Longyan
  • Yuan, Jianping
  • Luo, Zhaohui
  • Wang, Zilu
  • Zhang, Bowen
  • Tan, Andy C.C.

Abstract

Horizontal axis tidal turbines (HATT) conversion of ocean tidal waves into electricity represents a promising source of clean and sustainable energy. However, the widespread adoption of these turbines has been hindered by persistent challenges, primarily stemming from the high costs associated with their construction and maintenance; and efficient conversion of tidal energy. Addressing these challenges is paramount for propelling tidal turbine technology and ensuring its economic viability. This study focuses on the efficient conversion of tidal energy into electricity by optimization of composite material turbine blades which is a complex problem that spans multiple physical domains, including hydrodynamics (the study of water flow) and structural mechanics (the study of material behavior under loads). To tackle these multifaceted challenges, we introduce an innovative DLFSI (Deep learning fluid-structure interaction) model which represents a groundbreaking approach to predict and optimize the hydrodynamic and structural performance of tidal turbine blades. DLFSI leverages the power of convolutional neural networks (CNN) to recognize intricate geometric features of turbine blades rapidly and accurately. By seamlessly integrating the blade element momentum (BEM) theory and finite element method (FEM), the DLFSI model facilitates comprehensive predictions of how composite blades will perform in real-world conditions. With this approach, we have achieved substantial improvements in critical performance metrics such as the power coefficient (a measure of energy conversion efficiency) and the maximum equivalent stress (a key indicator of structural integrity). The innovative DLFSI model presented in this study holds the potential for practical application within the realm of tidal turbine design and is poised to catalyze the sustainable progression of renewable energy technologies.

Suggested Citation

  • Xu, Jian & Wang, Longyan & Yuan, Jianping & Luo, Zhaohui & Wang, Zilu & Zhang, Bowen & Tan, Andy C.C., 2024. "DLFSI: A deep learning static fluid-structure interaction model for hydrodynamic-structural optimization of composite tidal turbine blade," Renewable Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002441
    DOI: 10.1016/j.renene.2024.120179
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124002441
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120179?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.