IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v200y2022icp983-995.html
   My bibliography  Save this article

Experimental investigation of the influence of mast proximity on rotor loads for horizontal axis tidal turbines

Author

Listed:
  • Shoukat, G.
  • Gaurier, B.
  • Facq, J.-V.
  • Payne, G.S.

Abstract

While the world continues to grapple with the increasingly prominent impact on the planet of climate change, a shift towards greater reliance on renewable energy sources is observed. Wind, hydro and solar have seen a rise in uptake, however, tidal energy represents massive untapped potential. For tidal energy to become economically viable, focus must shift towards designing efficient yet structurally sound designs. The current study investigates the influence of the tower distance from the rotor plane on turbine performance, and on rotor loading. A test scale instrumented tidal stream turbine is studied in a water flume tank at the laboratory of IFREMER in Boulogne-sur-Mer, France. Experiments are carried out with 14 different tower positions and the turbine performance coefficients are compared. Both mean Cp and Ct values remain unaffected for these different positions. However, the structural rotor loading is found to fluctuate significantly as the distance between the tower and rotor is reduced. Load measurements are analysed in terms of coefficient of variation, through frequency analysis, in relation with the azimuthal position of the rotor and finally in terms of exceedance. All the experimental measurements associated with this study are available from: https://doi.org/10.17882/81077.

Suggested Citation

  • Shoukat, G. & Gaurier, B. & Facq, J.-V. & Payne, G.S., 2022. "Experimental investigation of the influence of mast proximity on rotor loads for horizontal axis tidal turbines," Renewable Energy, Elsevier, vol. 200(C), pages 983-995.
  • Handle: RePEc:eee:renene:v:200:y:2022:i:c:p:983-995
    DOI: 10.1016/j.renene.2022.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122014987
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carwyn Frost & Ian Benson & Penny Jeffcoate & Björn Elsäßer & Trevor Whittaker, 2018. "The Effect of Control Strategy on Tidal Stream Turbine Performance in Laboratory and Field Experiments," Energies, MDPI, vol. 11(6), pages 1-16, June.
    2. Ahmed, U. & Apsley, D.D. & Afgan, I. & Stallard, T. & Stansby, P.K., 2017. "Fluctuating loads on a tidal turbine due to velocity shear and turbulence: Comparison of CFD with field data," Renewable Energy, Elsevier, vol. 112(C), pages 235-246.
    3. Mason-Jones, A. & O'Doherty, D.M. & Morris, C.E. & O'Doherty, T., 2013. "Influence of a velocity profile & support structure on tidal stream turbine performance," Renewable Energy, Elsevier, vol. 52(C), pages 23-30.
    4. Bahaj, A.S. & Molland, A.F. & Chaplin, J.R. & Batten, W.M.J., 2007. "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank," Renewable Energy, Elsevier, vol. 32(3), pages 407-426.
    5. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    6. Finnegan, William & Fagan, Edward & Flanagan, Tomas & Doyle, Adrian & Goggins, Jamie, 2020. "Operational fatigue loading on tidal turbine blades using computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 430-440.
    7. Milne, I.A. & Day, A.H. & Sharma, R.N. & Flay, R.G.J., 2016. "The characterisation of the hydrodynamic loads on tidal turbines due to turbulence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 851-864.
    8. Gaurier, Benoît & Ikhennicheu, Maria & Germain, Grégory & Druault, Philippe, 2020. "Experimental study of bathymetry generated turbulence on tidal turbine behaviour," Renewable Energy, Elsevier, vol. 156(C), pages 1158-1170.
    9. Thiébaut, Maxime & Filipot, Jean-François & Maisondieu, Christophe & Damblans, Guillaume & Duarte, Rui & Droniou, Eloi & Chaplain, Nicolas & Guillou, Sylvain, 2020. "A comprehensive assessment of turbulence at a tidal-stream energy site influenced by wind-generated ocean waves," Energy, Elsevier, vol. 191(C).
    10. Vinod, Ashwin & Banerjee, Arindam, 2019. "Performance and near-wake characterization of a tidal current turbine in elevated levels of free stream turbulence," Applied Energy, Elsevier, vol. 254(C).
    11. Vinod, Ashwin & Han, Cong & Banerjee, Arindam, 2021. "Tidal turbine performance and near-wake characteristics in a sheared turbulent inflow," Renewable Energy, Elsevier, vol. 175(C), pages 840-852.
    12. Frost, C. & Morris, C.E. & Mason-Jones, A. & O'Doherty, D.M. & O'Doherty, T., 2015. "The effect of tidal flow directionality on tidal turbine performance characteristics," Renewable Energy, Elsevier, vol. 78(C), pages 609-620.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Modali, Pranav K. & Vinod, Ashwin & Banerjee, Arindam, 2021. "Towards a better understanding of yawed turbine wake for efficient wake steering in tidal arrays," Renewable Energy, Elsevier, vol. 177(C), pages 482-494.
    2. Mujahid Badshah & Saeed Badshah & James VanZwieten & Sakhi Jan & Muhammad Amir & Suheel Abdullah Malik, 2019. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile," Energies, MDPI, vol. 12(11), pages 1-22, June.
    3. Faizan, Muhammad & Badshah, Saeed & Badshah, Mujahid & Haider, Basharat Ali, 2022. "Performance and wake analysis of horizontal axis tidal current turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 184(C), pages 740-752.
    4. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2022. "An investigation of tidal turbine performance and loads under various turbulence conditions using Blade Element Momentum theory and high-frequency field data acquired in two prospective tidal energy s," Renewable Energy, Elsevier, vol. 201(P1), pages 928-937.
    5. Magnier, Maëlys & Delette, Nina & Druault, Philippe & Gaurier, Benoît & Germain, Grégory, 2022. "Experimental study of the shear flow effect on tidal turbine blade loading variation," Renewable Energy, Elsevier, vol. 193(C), pages 744-757.
    6. Finnegan, William & Fagan, Edward & Flanagan, Tomas & Doyle, Adrian & Goggins, Jamie, 2020. "Operational fatigue loading on tidal turbine blades using computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 430-440.
    7. Vinod, Ashwin & Han, Cong & Banerjee, Arindam, 2021. "Tidal turbine performance and near-wake characteristics in a sheared turbulent inflow," Renewable Energy, Elsevier, vol. 175(C), pages 840-852.
    8. Maduka, Maduka & Li, Chi Wai, 2022. "Experimental evaluation of power performance and wake characteristics of twin flanged duct turbines in tandem under bi-directional tidal flows," Renewable Energy, Elsevier, vol. 199(C), pages 1543-1567.
    9. Zia Ur Rehman & Saeed Badshah & Amer Farhan Rafique & Mujahid Badshah & Sakhi Jan & Muhammad Amjad, 2021. "Effect of a Support Tower on the Performance and Wake of a Tidal Current Turbine," Energies, MDPI, vol. 14(4), pages 1-13, February.
    10. Liu, Xiaodong & Feng, Bo & Liu, Di & Wang, Yiming & Zhao, Haitao & Si, Yulin & Zhang, Dahai & Qian, Peng, 2022. "Study on two-rotor interaction of counter-rotating horizontal axis tidal turbine," Energy, Elsevier, vol. 241(C).
    11. Zhang, Yuquan & Zang, Wei & Zheng, Jinhai & Cappietti, Lorenzo & Zhang, Jisheng & Zheng, Yuan & Fernandez-Rodriguez, E., 2021. "The influence of waves propagating with the current on the wake of a tidal stream turbine," Applied Energy, Elsevier, vol. 290(C).
    12. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2021. "Seasonality of turbulence characteristics and wave-current interaction in two prospective tidal energy sites," Renewable Energy, Elsevier, vol. 178(C), pages 1322-1336.
    13. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2022. "Tidal turbine performance and loads for various hub heights and wave conditions using high-frequency field measurements and Blade Element Momentum theory," Renewable Energy, Elsevier, vol. 200(C), pages 1548-1560.
    14. Calandra, Gemma & Wang, Taiping & Miller, Calum & Yang, Zhaoqing & Polagye, Brian, 2023. "A comparison of the power potential for surface- and seabed-deployed tidal turbines in the San Juan Archipelago, Salish Sea, WA," Renewable Energy, Elsevier, vol. 214(C), pages 168-184.
    15. Druault, Philippe & Gaurier, Benoît & Germain, Grégory, 2022. "Spatial integration effect on velocity spectrum: Towards an interpretation of the − 11/3 power law observed in the spectra of turbine outputs," Renewable Energy, Elsevier, vol. 181(C), pages 1062-1080.
    16. Myriam Slama & Camille Choma Bex & Grégory Pinon & Michael Togneri & Iestyn Evans, 2021. "Lagrangian Vortex Computations of a Four Tidal Turbine Array: An Example Based on the NEPTHYD Layout in the Alderney Race," Energies, MDPI, vol. 14(13), pages 1-23, June.
    17. Moreau, Martin & Germain, Grégory & Maurice, Guillaume, 2023. "Experimental performance and wake study of a ducted twin vertical axis turbine in ebb and flood tide currents at a 1/20th scale," Renewable Energy, Elsevier, vol. 214(C), pages 318-333.
    18. Liu, Zhen & Qu, Hengliang & Shi, Hongda, 2020. "Energy-harvesting performance of a coupled-pitching hydrofoil under the semi-passive mode," Applied Energy, Elsevier, vol. 267(C).
    19. Lewis, Matt & McNaughton, James & Márquez-Dominguez, Concha & Todeschini, Grazia & Togneri, Michael & Masters, Ian & Allmark, Matthew & Stallard, Tim & Neill, Simon & Goward-Brown, Alice & Robins, Pet, 2019. "Power variability of tidal-stream energy and implications for electricity supply," Energy, Elsevier, vol. 183(C), pages 1061-1074.
    20. Razi, P. & Ramaprabhu, P. & Tarey, P. & Muglia, M. & Vermillion, C., 2022. "A low-order wake interaction modeling framework for the performance of ocean current turbines under turbulent conditions," Renewable Energy, Elsevier, vol. 200(C), pages 1602-1617.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:200:y:2022:i:c:p:983-995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.