IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v246y2025ics0960148125005579.html
   My bibliography  Save this article

Visualization on the turbulent structure and restructure characteristic in the wake of a packed bed reactor: PIV measurements and POD analysis

Author

Listed:
  • Linsong, Jiang
  • Tong, Zhou
  • Shaoyi, Suo
  • Yongqian, Dai
  • Ali Hamid, Mohammed Osman
  • Yang, Zhang
  • Haotian, Qi
  • Xinle, Yang
  • Maozhao, Xie

Abstract

Packed structures are widely applied in crucial energy engineering such as methane reforming, water gas shift reaction, and methanol synthesis due to the high specific surface area, excellent thermal conductivity, and complex overlapping channels. However, the current understanding of the wake flow patterns and turbulent characteristics under superimposed perturbations caused by complex terminal protrusions of the accumulation structure is still unclear. This study utilized a PIV system with high spatial resolution and accuracy to conduct non-contact visual measurements of the wake velocity field. The complex turbulent data of the wake flow was analyzed using the POD method to extract the primary modal flow characteristics and the energy distribution of each mode. The analysis of the flow characteristic quantities reconstructed from different order range modes revealed that as the Reynolds number increased: the size of vortices formed by the protruded structure at the trailing end increased, while the scale of vortices formed by the sub-protruded structure decreased; furthermore, the energy distribution of the first and second modes decreased, indicating a decrease in the stability of the main flow pattern; the impact pattern for the similarity between the reconstructed flow field and the transient flow field showed significant changes depending on the number of included modes.

Suggested Citation

  • Linsong, Jiang & Tong, Zhou & Shaoyi, Suo & Yongqian, Dai & Ali Hamid, Mohammed Osman & Yang, Zhang & Haotian, Qi & Xinle, Yang & Maozhao, Xie, 2025. "Visualization on the turbulent structure and restructure characteristic in the wake of a packed bed reactor: PIV measurements and POD analysis," Renewable Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005579
    DOI: 10.1016/j.renene.2025.122895
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125005579
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122895?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zarei, Sasan & Mousavi, Seyyed Mohammad & Amani, Teimour & Khamforoush, Mehrdad & Jafari, Arezou, 2021. "Three-dimensional CFD simulation of anaerobic reactions in a continuous packed-bed bioreactor," Renewable Energy, Elsevier, vol. 169(C), pages 461-472.
    2. Kipngetich, P. & Kiplimo, R. & Tanui, J.K. & Chisale, P.C., 2022. "Optimization of combustion parameters of carbonized rice husk briquettes in a fixed bed using RSM technique," Renewable Energy, Elsevier, vol. 198(C), pages 61-74.
    3. Luo, Zhaohui & Wang, Longyan & Xu, Jian & Wang, Zilu & Yuan, Jianping & Tan, Andy C.C., 2024. "A reduced order modeling-based machine learning approach for wind turbine wake flow estimation from sparse sensor measurements," Energy, Elsevier, vol. 294(C).
    4. Yang, Xuefeng & Yu, Peining & Sui, Yi & Chen, Shengli & Xing, Jiuxing & Li, Lei, 2024. "A numerical study of rainfall effects on wind turbine wakes," Renewable Energy, Elsevier, vol. 230(C).
    5. Zhang, Tianyue & Ji, Changwei & Wang, Zhe & Wang, Shuofeng & Yang, Haowen & Wang, Huaiyu & Jiang, Nan, 2024. "Experimental investigation on the combustion characteristics of ultra-lean premixed hydrogen/air using turbulent jet ignition," Energy, Elsevier, vol. 293(C).
    6. Okulov, V.L. & Naumov, I.V. & Kabardin, I.K. & Litvinov, I.V. & Markovich, D.M. & Mikkelsen, R.F. & Sørensen, J.N. & Alekseenko, S.V. & Wood, D.H., 2021. "Experiments on line arrays of horizontal-axis hydroturbines," Renewable Energy, Elsevier, vol. 163(C), pages 15-21.
    7. Mao, Qianjun & Zhang, Yamei, 2020. "Thermal energy storage performance of a three-PCM cascade tank in a high-temperature packed bed system," Renewable Energy, Elsevier, vol. 152(C), pages 110-119.
    8. ELSihy, ELSaeed Saad & Cai, Changrui & Li, Zhenpeng & Du, Xiaoze & Wang, Zuyuan, 2024. "Performance investigation on the cascaded packed bed thermal energy storage system with encapsulated nano-enhanced phase change materials for high-temperature applications," Energy, Elsevier, vol. 293(C).
    9. Liu, Shaolin & Ahmadi-Senichault, Azita & Pozzobon, Victor & Lachaud, Jean, 2024. "Multi-scale investigation of heat and momentum transfer in packed-bed TES systems up to 800 K," Applied Energy, Elsevier, vol. 366(C).
    10. Wu, Jiani & Fan, Jianhua & Ma, Tianzeng & Kong, Weiqiang & Chang, Zheshao & Li, Xin, 2024. "Identifying driving factors in cascaded packed bed latent thermal energy storage: An experimental validation," Renewable Energy, Elsevier, vol. 224(C).
    11. Öztürk, Buğrahan & Hassanein, Abdelrahman & Akpolat, M Tuğrul & Abdulrahim, Anas & Perçin, Mustafa & Uzol, Oğuz, 2023. "On the wake characteristics of a model wind turbine and a porous disc: Effects of freestream turbulence intensity," Renewable Energy, Elsevier, vol. 212(C), pages 238-250.
    12. Shi, Junrui & Liu, Yongqi & Mao, Mingming & Lv, Jinsheng & Wang, Youtang & He, Fang, 2019. "Experimental and numerical studies on the effect of packed bed length on CO and NOx emissions in a plane-parallel porous combustor," Energy, Elsevier, vol. 181(C), pages 250-263.
    13. Zhou, Lei & Wen, Jiahao & Wang, Zhaokun & Deng, Pengru & Zhang, Hongfu, 2023. "High-fidelity wind turbine wake velocity prediction by surrogate model based on d-POD and LSTM," Energy, Elsevier, vol. 275(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Jihui & Li, Qing & Qiu, Yu, 2025. "Optimizations of cascaded packed-bed thermal energy storage units for next-generation concentrating solar power," Energy, Elsevier, vol. 320(C).
    2. Luo, Zhaohui & Wang, Longyan & Fu, Yanxia & Xu, Jian & Yuan, Jianping & Tan, Andy Chit, 2024. "Wind turbine dynamic wake flow estimation (DWFE) from sparse data via reduced-order modeling-based machine learning approach," Renewable Energy, Elsevier, vol. 237(PA).
    3. Cui, Jie & Yang, Xueming & Zhang, Hao & Chen, Jianzhi & Xie, Jianfei, 2025. "Analysis for temperature stability and thermal transport performance of cascaded phase change packed bed thermal energy storage system under unstable factors," Energy, Elsevier, vol. 316(C).
    4. Reddy, K. Bheemalingeswara & Bhosale, Amit C., 2024. "Effect of number of blades on performance and wake recovery for a vertical axis helical hydrokinetic turbine," Energy, Elsevier, vol. 299(C).
    5. Chen, Bowen & Lin, Yonggang & Gu, Yajing & Feng, Xiangheng & Cao, Zhongpeng & Sun, Yong, 2025. "A novel active wake control strategy based on LiDAR for wind farms," Energy, Elsevier, vol. 317(C).
    6. Guanghui Che & Daocheng Zhou & Rui Wang & Lei Zhou & Hongfu Zhang & Sheng Yu, 2024. "Wind Energy Assessment in Forested Regions Based on the Combination of WRF and LSTM-Attention Models," Sustainability, MDPI, vol. 16(2), pages 1-17, January.
    7. Luo, Zhaohui & Wang, Longyan & Xu, Jian & Wang, Zilu & Yuan, Jianping & Tan, Andy C.C., 2024. "A reduced order modeling-based machine learning approach for wind turbine wake flow estimation from sparse sensor measurements," Energy, Elsevier, vol. 294(C).
    8. Shi, Yueyue & Liu, Yongqi & Zhou, Yuqi & Shi, Junrui & Qi, Xiaoni & Mao, Mingming, 2023. "Study in mitigation of lean methane and stable heat recovery via embedded heat exchanger tubes in the regenerative monolith bed," Renewable Energy, Elsevier, vol. 218(C).
    9. Huanqiang, Zhang & Xiaoxia, Gao & Hongkun, Lu & Qiansheng, Zhao & Xiaoxun, Zhu & Yu, Wang & Fei, Zhao, 2024. "Investigation of a new 3D wake model of offshore floating wind turbines subjected to the coupling effects of wind and wave," Applied Energy, Elsevier, vol. 365(C).
    10. Jeroen Mol & Mina Shahi & Amirhoushang Mahmoudi, 2020. "Numerical Modeling of Thermal Storage Performance of Encapsulated PCM Particles in an Unstructured Packed Bed," Energies, MDPI, vol. 13(23), pages 1-16, December.
    11. Saedpanah, Ehsan & Lahonian, Mansour & Malek Abad, Mahdi Zare, 2023. "Optimization of multi-source renewable energy air conditioning systems using a combination of transient simulation, response surface method, and 3E lifespan analysis," Energy, Elsevier, vol. 272(C).
    12. Anagnostopoulos, Argyrios & Xenitopoulos, Theofilos & Ding, Yulong & Seferlis, Panos, 2024. "An integrated machine learning and metaheuristic approach for advanced packed bed latent heat storage system design and optimization," Energy, Elsevier, vol. 297(C).
    13. Shao, Y.L. & Soh, K.Y. & Islam, M.R. & Chua, K.J., 2023. "Thermal, exergy and economic analysis of a cascaded packed-bed tank with multiple phase change materials for district cooling system," Energy, Elsevier, vol. 268(C).
    14. Lutsenko, Nickolay A. & Fetsov, Sergey S., 2020. "Effect of side walls shape on charging and discharging performance of thermal energy storages based on granular phase change materials," Renewable Energy, Elsevier, vol. 162(C), pages 466-477.
    15. Han, Cong & Banerjee, Arindam, 2024. "Near wake evolution of a tidal stream turbine due to asymmetric sheared turbulent inflow with different integral length scales," Renewable Energy, Elsevier, vol. 237(PD).
    16. Zhang, Ziyu & Huang, Peng, 2023. "Prediction of multiple-wake velocity and wind power using a cosine-shaped wake model," Renewable Energy, Elsevier, vol. 219(P1).
    17. Zangeneh, Vahid & Alipoor, Alireza, 2021. "Stability study of hydrogen-air flame in a conical porous burner," Energy, Elsevier, vol. 215(PB).
    18. Mao, Qianjun & Cao, Wenlong, 2023. "Effect of variable capsule size on energy storage performances in a high-temperature three-layered packed bed system," Energy, Elsevier, vol. 273(C).
    19. ELSihy, ELSaeed Saad & Xie, Haozhe & Wang, Tengxiao & Wang, Zuyuan, 2024. "Multi-factor numerical research on the melting dynamics improvement of an innovative gradient finned tube latent heat storage unit," Energy, Elsevier, vol. 313(C).
    20. Göçmen, Tuhfe & Liew, Jaime & Kadoche, Elie & Dimitrov, Nikolay & Riva, Riccardo & Andersen, Søren Juhl & Lio, Alan W.H. & Quick, Julian & Réthoré, Pierre-Elouan & Dykes, Katherine, 2025. "Data-driven wind farm flow control and challenges towards field implementation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.