IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v317y2025ics0360544225001999.html
   My bibliography  Save this article

A novel active wake control strategy based on LiDAR for wind farms

Author

Listed:
  • Chen, Bowen
  • Lin, Yonggang
  • Gu, Yajing
  • Feng, Xiangheng
  • Cao, Zhongpeng
  • Sun, Yong

Abstract

The increasing size and clustering of wind turbines have amplified wake effects, reducing wind farm power generation. For this reason, a multi-priority control strategy based on axial induction control was proposed to enhance the total power output of the wind farm in this paper. Firstly, a wind speed time-delay prediction model based on LiDAR for tandem turbines was constructed, by employing a time-delay processing algorithm to refine the wind speed engineering model and integrating a neural network model for the axial induction factor at the rotor. After that, a multi-priority control strategy, defining turbine priorities based on wake effects and adjusting power distribution via the axial induction factor, was proposed to maximize power capture for wind farms. Simulink and FAST co-simulations shown that, under steady-state wind input conditions, the multi-priority control strategy increased power output of the wind farm by 6.62 %, compared to the maximum power point tracking strategy. Finally, preliminary hardware-in-the-loop experiments demonstrated that the control strategy did not have a negative impact in a semi-physical environment, providing theoretical support for subsequent ground-based wind turbine experiments.

Suggested Citation

  • Chen, Bowen & Lin, Yonggang & Gu, Yajing & Feng, Xiangheng & Cao, Zhongpeng & Sun, Yong, 2025. "A novel active wake control strategy based on LiDAR for wind farms," Energy, Elsevier, vol. 317(C).
  • Handle: RePEc:eee:energy:v:317:y:2025:i:c:s0360544225001999
    DOI: 10.1016/j.energy.2025.134557
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225001999
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134557?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Fei, Zhao & Tengyuan, Wang & Xiaoxia, Gao & Haiying, Sun & Hongxing, Yang & Zhonghe, Han & Yu, Wang & Xiaoxun, Zhu, 2020. "Experimental study on wake interactions and performance of the turbines with different rotor-diameters in adjacent area of large-scale wind farm," Energy, Elsevier, vol. 199(C).
    2. Wang, Longyan & Chen, Meng & Luo, Zhaohui & Zhang, Bowen & Xu, Jian & Wang, Zilu & Tan, Andy C.C., 2024. "Dynamic wake field reconstruction of wind turbine through Physics-Informed Neural Network and Sparse LiDAR data," Energy, Elsevier, vol. 291(C).
    3. Shin, Dongheon & Ko, Kyungnam, 2022. "Experimental study on application of nacelle-mounted LiDAR for analyzing wind turbine wake effects by distance," Energy, Elsevier, vol. 243(C).
    4. van der Hoek, Daan & Kanev, Stoyan & Allin, Julian & Bieniek, David & Mittelmeier, Niko, 2019. "Effects of axial induction control on wind farm energy production - A field test," Renewable Energy, Elsevier, vol. 140(C), pages 994-1003.
    5. Javier Serrano González & Bruno López & Martín Draper, 2021. "Optimal Pitch Angle Strategy for Energy Maximization in Offshore Wind Farms Considering Gaussian Wake Model," Energies, MDPI, vol. 14(4), pages 1-18, February.
    6. Zhang, Zhihao & Yang, Haoran & Zhao, Yongsheng & Han, Zhaolong & Zhou, Dai & Zhang, Jianhua & Tu, Jiahuang & Chen, Mingsheng, 2024. "A novel wake control strategy for a twin-rotor floating wind turbine: Mitigating wake effect," Energy, Elsevier, vol. 287(C).
    7. Luo, Zhaohui & Wang, Longyan & Xu, Jian & Wang, Zilu & Yuan, Jianping & Tan, Andy C.C., 2024. "A reduced order modeling-based machine learning approach for wind turbine wake flow estimation from sparse sensor measurements," Energy, Elsevier, vol. 294(C).
    8. Li, Jiale & Wang, Xuefei & Yu, Xiong (Bill), 2018. "Use of spatio-temporal calibrated wind shear model to improve accuracy of wind resource assessment," Applied Energy, Elsevier, vol. 213(C), pages 469-485.
    9. Takanori Uchida & Yoshihiro Taniyama & Yuki Fukatani & Michiko Nakano & Zhiren Bai & Tadasuke Yoshida & Masaki Inui, 2020. "A New Wind Turbine CFD Modeling Method Based on a Porous Disk Approach for Practical Wind Farm Design," Energies, MDPI, vol. 13(12), pages 1-27, June.
    10. Park, Jinkyoo & Law, Kincho H., 2016. "A data-driven, cooperative wind farm control to maximize the total power production," Applied Energy, Elsevier, vol. 165(C), pages 151-165.
    11. Wang, Kai & Hua, Yu & Huang, Lianzhong & Guo, Xin & Liu, Xing & Ma, Zhongmin & Ma, Ranqi & Jiang, Xiaoli, 2023. "A novel GA-LSTM-based prediction method of ship energy usage based on the characteristics analysis of operational data," Energy, Elsevier, vol. 282(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Xiaoxun & Chen, Yao & Xu, Shinai & Zhang, Shaohai & Gao, Xiaoxia & Sun, Haiying & Wang, Yu & Zhao, Fei & Lv, Tiancheng, 2023. "Three-dimensional non-uniform full wake characteristics for yawed wind turbine with LiDAR-based experimental verification," Energy, Elsevier, vol. 270(C).
    2. Luo, Zhaohui & Wang, Longyan & Fu, Yanxia & Xu, Jian & Yuan, Jianping & Tan, Andy Chit, 2024. "Wind turbine dynamic wake flow estimation (DWFE) from sparse data via reduced-order modeling-based machine learning approach," Renewable Energy, Elsevier, vol. 237(PA).
    3. Zhang, Zhihao & Yang, Haoran & Wang, Runzhong & Zhang, Kai & Zhou, Dai & Zhu, Hongbo & Zhang, Puyang & Han, Zhaolong & Cao, Yong & Tu, Jiahuang, 2025. "Effects of combined platform rotation and pitch motions on aerodynamic loading and wake recovery of a single-point moored twin-rotor floating wind turbine," Energy, Elsevier, vol. 320(C).
    4. Shin, Dongheon & Ko, Kyungnam, 2022. "Experimental study on application of nacelle-mounted LiDAR for analyzing wind turbine wake effects by distance," Energy, Elsevier, vol. 243(C).
    5. Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Zhichang Liang & Jingjing Zhang & Xinru Guo & Haixiao Liu, 2025. "Investigation of Wake Expansion for Spanwise Arranged Turbines in the Offshore Wind Farm by Large Eddy Simulation," Energies, MDPI, vol. 18(11), pages 1-24, June.
    7. Crippa, Paola & Alifa, Mariana & Bolster, Diogo & Genton, Marc G. & Castruccio, Stefano, 2021. "A temporal model for vertical extrapolation of wind speed and wind energy assessment," Applied Energy, Elsevier, vol. 301(C).
    8. Yao Zhong & Tengbin Li & Krzysztof Przystupa & Cong Lin & Guangrun Yang & Sen Yang & Orest Kochan & Jarosław Sikora, 2024. "Spatiotemporal Correlation Analysis for Predicting Current Transformer Errors in Smart Grids," Energies, MDPI, vol. 17(7), pages 1-14, March.
    9. Gualtieri, Giovanni, 2019. "A comprehensive review on wind resource extrapolation models applied in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 215-233.
    10. Gu, Bo & Meng, Hang & Ge, Mingwei & Zhang, Hongtao & Liu, Xinyu, 2021. "Cooperative multiagent optimization method for wind farm power delivery maximization," Energy, Elsevier, vol. 233(C).
    11. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    12. Gong, Bin & An, Aimin & Shi, Yaoke & Guan, Haijiao & Jia, Wenchao & Yang, Fazhi, 2024. "An interpretable hybrid spatiotemporal fusion method for ultra-short-term photovoltaic power prediction," Energy, Elsevier, vol. 308(C).
    13. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    14. Cai, Wei & Hu, Yang & Fang, Fang & Yao, Lujin & Liu, Jizhen, 2023. "Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines," Applied Energy, Elsevier, vol. 339(C).
    15. Duan, Tianyao & Guo, Huan & Qi, Xiao & Sun, Ming & Forrest, Jeffrey, 2024. "A novel information enhanced Grey Lotka–Volterra model driven by system mechanism and data for energy forecasting of WEET project in China," Energy, Elsevier, vol. 304(C).
    16. Yang, Zihao & Dong, Sheng, 2024. "A novel framework for wind energy assessment at multi-time scale based on non-stationary wind speed models: A case study in China," Renewable Energy, Elsevier, vol. 226(C).
    17. Yang, Shanghui & Deng, Xiaowei & Li, Qinglan, 2025. "A joint optimization framework for power and fatigue life based on cooperative wake steering of wind farm," Energy, Elsevier, vol. 319(C).
    18. Han, Peixiu & Liu, Zhongbo & Li, Chi & Sun, Zhuo & Yan, Chunxin, 2024. "A novel federated learning-based two-stage approach for ship energy consumption optimization considering both shipping data security and statistical heterogeneity," Energy, Elsevier, vol. 309(C).
    19. Wang, Tengyuan & Cai, Chang & Wang, Xinbao & Wang, Zekun & Chen, Yewen & Song, Juanjuan & Xu, Jianzhong & Zhang, Yuning & Li, Qingan, 2023. "A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow," Energy, Elsevier, vol. 271(C).
    20. Li, Jiale & Song, Zihao & Wang, Xuefei & Wang, Yanru & Jia, Yaya, 2022. "A novel offshore wind farm typhoon wind speed prediction model based on PSO–Bi-LSTM improved by VMD," Energy, Elsevier, vol. 251(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:317:y:2025:i:c:s0360544225001999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.