IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v309y2024ics0360544224029256.html
   My bibliography  Save this article

A novel federated learning-based two-stage approach for ship energy consumption optimization considering both shipping data security and statistical heterogeneity

Author

Listed:
  • Han, Peixiu
  • Liu, Zhongbo
  • Li, Chi
  • Sun, Zhuo
  • Yan, Chunxin

Abstract

Ship energy consumption (SEC) efficiency optimization is crucial to sustainable maritime transportation. Due to commercial confidentiality, shipping data cannot be freely shared. Federated learning (FL) addresses this by predicting fuel consumption while maintaining data privacy. Traditional FL struggles with accuracy due to statistical heterogeneity in shipping data. To address it, an FL framework incorporating adaptive regularization terms is proposed. Alongside, given the scarcity of maritime communication resources, a tailored convolutional neural network-gated recurrent unit (CNN-GRU) model is designed for ship clients. Furthermore, based on the prediction results, a Mixed Integer Non-Linear Programming (MINLP) model is formulated to derive optimal speeds and establish a joint database for trim strategy output. Through the prediction and optimization approach, three optimized SEC efficiency metrics are obtained. Experimental results on data from eight bulk carriers show that the proposed FL framework with adaptive regularization terms improves prediction accuracy over individual, FedAvg, and FL with classical regularization term models. The CNN-GRU model outperforms IGWO-LSTM, GRU, and CNN-LSTM models in RMSE and adjusted R-squared value. The optimization approach enhances SEC efficiency by 1.42%–3.94 %. These findings provide practical recommendations for maritime organizations to set efficient speeds and trim strategies for fleet management under secured data conditions.

Suggested Citation

  • Han, Peixiu & Liu, Zhongbo & Li, Chi & Sun, Zhuo & Yan, Chunxin, 2024. "A novel federated learning-based two-stage approach for ship energy consumption optimization considering both shipping data security and statistical heterogeneity," Energy, Elsevier, vol. 309(C).
  • Handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224029256
    DOI: 10.1016/j.energy.2024.133150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224029256
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lv, Zhihan & Wang, Nana & Lou, Ranran & Tian, Yajun & Guizani, Mohsen, 2023. "Towards carbon Neutrality: Prediction of wave energy based on improved GRU in Maritime transportation," Applied Energy, Elsevier, vol. 331(C).
    2. Ruan, Zhang & Huang, Lianzhong & Wang, Kai & Ma, Ranqi & Wang, Zhongyi & Zhang, Rui & Zhao, Haoyang & Wang, Cong, 2024. "A novel prediction method of fuel consumption for wing-diesel hybrid vessels based on feature construction," Energy, Elsevier, vol. 286(C).
    3. Wang, Kai & Hua, Yu & Huang, Lianzhong & Guo, Xin & Liu, Xing & Ma, Zhongmin & Ma, Ranqi & Jiang, Xiaoli, 2023. "A novel GA-LSTM-based prediction method of ship energy usage based on the characteristics analysis of operational data," Energy, Elsevier, vol. 282(C).
    4. Chen, Xinqiang & Lv, Siying & Shang, Wen-long & Wu, Huafeng & Xian, Jiangfeng & Song, Chengcheng, 2024. "Ship energy consumption analysis and carbon emission exploitation via spatial-temporal maritime data," Applied Energy, Elsevier, vol. 360(C).
    5. Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    6. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    7. Wei, Nan & Yin, Lihua & Li, Chao & Li, Changjun & Chan, Christine & Zeng, Fanhua, 2021. "Forecasting the daily natural gas consumption with an accurate white-box model," Energy, Elsevier, vol. 232(C).
    8. Yan, Ran & Wang, Shuaian & Psaraftis, Harilaos N., 2021. "Data analytics for fuel consumption management in maritime transportation: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruan, Zhang & Huang, Lianzhong & Li, Daize & Ma, Ranqi & Wang, Kai & Zhang, Rui & Zhao, Haoyang & Wu, Jianyi & Li, Xiaowu, 2025. "A novel dual-stage grey-box stacking method for significantly improving the extrapolation performance of ship fuel consumption prediction models," Energy, Elsevier, vol. 318(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lan, Tian & Huang, Lianzhong & Ma, Ranqi & Wang, Kai & Ruan, Zhang & Wu, Jianyi & Li, Xiaowu & Chen, Li, 2025. "A robust method of dual adaptive prediction for ship fuel consumption based on polymorphic particle swarm algorithm driven," Applied Energy, Elsevier, vol. 379(C).
    2. Li, Zhijun & Fei, Jiangang & Du, Yuquan & Ong, Kok-Leong & Arisian, Sobhan, 2024. "A near real-time carbon accounting framework for the decarbonization of maritime transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).
    3. Kondratenko, Aleksander A. & Zhang, Mingyang & Tavakoli, Sasan & Altarriba, Elias & Hirdaris, Spyros, 2025. "Existing technologies and scientific advancements to decarbonize shipping by retrofitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    4. Ruan, Zhang & Huang, Lianzhong & Li, Daize & Ma, Ranqi & Wang, Kai & Zhang, Rui & Zhao, Haoyang & Wu, Jianyi & Li, Xiaowu, 2025. "A novel dual-stage grey-box stacking method for significantly improving the extrapolation performance of ship fuel consumption prediction models," Energy, Elsevier, vol. 318(C).
    5. Luo, Xi & Yan, Ran & Xu, Lang & Wang, Shuaian, 2024. "Accuracy and applicability of ship's fuel consumption prediction models: A comprehensive comparative analysis," Energy, Elsevier, vol. 310(C).
    6. Nguyen, Son & Fu, Xiuju & Ogawa, Daichi & Zheng, Qin, 2023. "An application-oriented testing regime and multi-ship predictive modeling for vessel fuel consumption prediction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    7. Ghosh, Indranil & De, Arijit, 2024. "Maritime Fuel Price Prediction of European Ports using Least Square Boosting and Facebook Prophet: Additional Insights from Explainable Artificial Intelligence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
    8. Guo, Yuhan & Wang, Yiyang & Chen, Yuhan & Wu, Lingxiao & Mao, Wengang, 2024. "Learning-based Pareto-optimum routing of ships incorporating uncertain meteorological and oceanographic forecasts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    9. Ding, Yanyan & Yang, Dong, 2025. "Should an electric vehicle manufacturer buy its own ship? Investment and pricing strategies under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 195(C).
    10. Wang, Kai & Liu, Xing & Guo, Xin & Wang, Jianhang & Wang, Zhuang & Huang, Lianzhong, 2024. "A novel high-precision and self-adaptive prediction method for ship energy consumption based on the multi-model fusion approach," Energy, Elsevier, vol. 310(C).
    11. Tan, Zhijia & Shao, Shuai & Zhang, Di & Shang, Wen-Long & Ochieng, Washington & Han, Yi, 2024. "Decarbonizing the inland container fleet with carbon cap-and-trade scheme," Applied Energy, Elsevier, vol. 376(PB).
    12. Fan, Ailong & Wang, Yifu & Yang, Liu & Yang, Zhiyong & Hu, Zhihui, 2025. "A novel grey box model for ship fuel consumption prediction adapted to complex navigating conditions," Energy, Elsevier, vol. 315(C).
    13. Ruan, Zhang & Huang, Lianzhong & Wang, Kai & Ma, Ranqi & Wang, Zhongyi & Zhang, Rui & Zhao, Haoyang & Wang, Cong, 2024. "A novel prediction method of fuel consumption for wing-diesel hybrid vessels based on feature construction," Energy, Elsevier, vol. 286(C).
    14. Govindan, Kannan & Dua, Rubal & Mehbub Anwar, AHM & Bansal, Prateek, 2024. "Enabling net-zero shipping: An expert review-based agenda for emerging techno-economic and policy research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    15. Niu, Baozhuang & Dong, Jian & Wang, Hongzhi, 2024. "Smart port vs. port integration to mitigate congestion: ESG performance and data validation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).
    16. Xinyu Li & Yi Zuo & Junhao Jiang, 2022. "Application of Regression Analysis Using Broad Learning System for Time-Series Forecast of Ship Fuel Consumption," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    17. Meng, Bin & Chen, Shuiyang & Haralambides, Hercules & Kuang, Haibo & Fan, Lidong, 2023. "Information spillovers between carbon emissions trading prices and shipping markets: A time-frequency analysis," Energy Economics, Elsevier, vol. 120(C).
    18. Yang, Dong & Liao, Shiguan & Venus Lun, Y.H & Bai, Xiwen, 2023. "Towards sustainable port management: Data-driven global container ports turnover rate assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    19. Yao Zhong & Tengbin Li & Krzysztof Przystupa & Cong Lin & Guangrun Yang & Sen Yang & Orest Kochan & Jarosław Sikora, 2024. "Spatiotemporal Correlation Analysis for Predicting Current Transformer Errors in Smart Grids," Energies, MDPI, vol. 17(7), pages 1-14, March.
    20. Rabin K. Jana & Indranil Ghosh, 2025. "A residual driven ensemble machine learning approach for forecasting natural gas prices: analyses for pre-and during-COVID-19 phases," Annals of Operations Research, Springer, vol. 345(2), pages 757-778, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224029256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.