IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v192y2024ics1366554524003442.html
   My bibliography  Save this article

Enabling net-zero shipping: An expert review-based agenda for emerging techno-economic and policy research

Author

Listed:
  • Govindan, Kannan
  • Dua, Rubal
  • Mehbub Anwar, AHM
  • Bansal, Prateek

Abstract

The topic of net-zero shipping is emerging as a global priority. Given the projected increase in the shipping sector’s contributions to climate change, understanding the emerging research challenges for enabling net-zero shipping is critical. We address this research need by outlining key techno-economic and policy research priorities for achieving effective and equitable net-zero shipping. We use a three-step approach to achieve it. We begin by translating contemporary media issues to techno-economic and policy research challenges, followed by corroborating these identified research challenges with academic literature, and finally prioritizing them by consulting an array of maritime experts in policy, technology, fuel, and infrastructure fields. Our results delineate eleven overarching themes, among which the top four prioritized research challenges based on expert input are: (i) cost-benefit analyses of port initiatives aimed at facilitating maritime climate action; (ii) the investment and techno-economic aspects of onboard carbon capture and alternative shipping fuels, along with green shipping corridors’ potential to facilitate alternative fuel adoption, and (iii & iv) the complex interaction of climate, economic, and socio-political factors in shipping carbon pricing implementation as part of ongoing negotiations at the International Maritime Organization (IMO) and shipping’s inclusion in the EU Emissions Trading System (ETS). The outlined priorities are significant as they could guide future industrial and academic research in generating actionable recommendations for policymakers and industry stakeholders, thereby expediting the formulation of focused approaches for an effective and fair transition to net-zero shipping. In terms of future research, the dynamic nature of emerging issues in achieving net-zero shipping suggests that findings may necessitate ongoing updates.

Suggested Citation

  • Govindan, Kannan & Dua, Rubal & Mehbub Anwar, AHM & Bansal, Prateek, 2024. "Enabling net-zero shipping: An expert review-based agenda for emerging techno-economic and policy research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:transe:v:192:y:2024:i:c:s1366554524003442
    DOI: 10.1016/j.tre.2024.103753
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524003442
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103753?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kern, Florian & Rogge, Karoline S. & Howlett, Michael, 2019. "Policy mixes for sustainability transitions: New approaches and insights through bridging innovation and policy studies," Research Policy, Elsevier, vol. 48(10).
    2. C. Izaguirre & I. J. Losada & P. Camus & J. L. Vigh & V. Stenek, 2021. "Climate change risk to global port operations," Nature Climate Change, Nature, vol. 11(1), pages 14-20, January.
    3. Zhen, Lu & Wang, Wencheng & Lin, Shumin, 2022. "Analytical comparison on two incentive policies for shore power equipped ships in berthing activities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    4. Chen, Shun & Zheng, Shiyuan & Sys, Christa, 2023. "Policies focusing on market-based measures towards shipping decarbonization: Designs, impacts and avenues for future research," Transport Policy, Elsevier, vol. 137(C), pages 109-124.
    5. Vierth, Inge & Ek, Karin & From, Emma & Lind, Joar, 2024. "The cost impacts of Fit for 55 on shipping and their implications for Swedish freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    6. Suzanne Greene & Cristiano Façanha, 2019. "Carbon offsets for freight transport decarbonization," Nature Sustainability, Nature, vol. 2(11), pages 994-996, November.
    7. Kannan Govindan, 2022. "Tunneling the barriers of blockchain technology in remanufacturing for achieving sustainable development goals: A circular manufacturing perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3769-3785, December.
    8. Anastasia Christodoulou & Dimitrios Dalaklis & Aykut I. Ölçer & Peyman Ghaforian Masodzadeh, 2021. "Inclusion of Shipping in the EU-ETS: Assessing the Direct Costs for the Maritime Sector Using the MRV Data," Energies, MDPI, vol. 14(13), pages 1-20, June.
    9. Geels, Frank W., 2010. "Ontologies, socio-technical transitions (to sustainability), and the multi-level perspective," Research Policy, Elsevier, vol. 39(4), pages 495-510, May.
    10. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    11. Kannan Govindan & Arash Khalili Nasr & Mohammad Saeed Heidary & Saeede Nosrati-Abarghooee & Hassan Mina, 2023. "Prioritizing adoption barriers of platforms based on blockchain technology from balanced scorecard perspectives in healthcare industry: a structural approach," International Journal of Production Research, Taylor & Francis Journals, vol. 61(11), pages 3512-3526, June.
    12. Govindan, Kannan & Kannan, Devika & Jørgensen, Thomas Ballegård & Nielsen, Tim Straarup, 2022. "Supply Chain 4.0 performance measurement: A systematic literature review, framework development, and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    13. Goyal, Srishti & Llop, Maria, 2024. "The shipping industry under the EU Green Deal: An Input-Output impact analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    14. Styliani Livaniou & Georgios A. Papadopoulos, 2022. "Liquefied Natural Gas (LNG) as a Transitional Choice Replacing Marine Conventional Fuels (Heavy Fuel Oil/Marine Diesel Oil), towards the Era of Decarbonisation," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    15. Mundaca, Gabriela & Strand, Jon & Young, Ian R., 2021. "Carbon pricing of international transport fuels: Impacts on carbon emissions and trade activity," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    16. Wu, Jie & Liu, Jiaguo & Li, Na, 2024. "The evasion strategy options for competitive ocean carriers under the EU ETS," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    17. Balcombe, Paul & Staffell, Iain & Kerdan, Ivan Garcia & Speirs, Jamie F. & Brandon, Nigel P. & Hawkes, Adam D., 2021. "How can LNG-fuelled ships meet decarbonisation targets? An environmental and economic analysis," Energy, Elsevier, vol. 227(C).
    18. Govindan, Kannan, 2023. "Pathways to low carbon energy transition through multi criteria assessment of offshore wind energy barriers," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    19. Hristos Karahalios, 2024. "Evaluation of constraints for investment in NOx emission technologies: case study on Greek bulk carrier owners," Maritime Business Review, Emerald Group Publishing Limited, vol. 9(2), pages 160-176, May.
    20. Monika Jain & Shalini Talwar & Rashmi Rastogi & Puneet Kaur & Amandeep Dhir, 2024. "Policy stimulation for the electric vehicle industry: An analysis of mainstream media discourse," Business Strategy and the Environment, Wiley Blackwell, vol. 33(6), pages 5303-5324, September.
    21. Wu, Lingxiao & Wang, Shuaian, 2020. "The shore power deployment problem for maritime transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    22. Yu, Jingjing & Tang, Guolei & Song, Xiangqun, 2022. "Collaboration of vessel speed optimization with berth allocation and quay crane assignment considering vessel service differentiation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    23. Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    24. Song, Zhuzhu & Tang, Wansheng & Zhao, Ruiqing & Zhang, Guoqing, 2022. "Implications of government subsidies on shipping companies’ shore power usage strategies in port," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    25. Reefke, Hendrik & Sundaram, David, 2017. "Key themes and research opportunities in sustainable supply chain management – identification and evaluation," Omega, Elsevier, vol. 66(PB), pages 195-211.
    26. Yan, Ran & Wang, Shuaian & Psaraftis, Harilaos N., 2021. "Data analytics for fuel consumption management in maritime transportation: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    27. Boris Stolz & Maximilian Held & Gil Georges & Konstantinos Boulouchos, 2022. "Techno-economic analysis of renewable fuels for ships carrying bulk cargo in Europe," Nature Energy, Nature, vol. 7(2), pages 203-212, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Tingsong & Cheng, Peiyue & Wang, Yadong, 2025. "How the establishment of carbon emission trading system affects ship emission reduction strategies designed for sulfur emission control area," Transport Policy, Elsevier, vol. 160(C), pages 138-153.
    2. Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    3. Aditi Khodke & Atsushi Watabe & Nigel Mehdi, 2021. "Implementation of Accelerated Policy-Driven Sustainability Transitions: Case of Bharat Stage 4 to 6 Leapfrogs in India," Sustainability, MDPI, vol. 13(8), pages 1-25, April.
    4. Lu, Bo & Xu, Xin & Qin, Xiaomeng & Cheng, T.C.E., 2024. "Optimal shore power adoption decisions with government regulation considering port competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    5. Wang, Jinggai & Li, Huanhuan & Yang, Zaili & Ge, Ying-En, 2024. "Shore power for reduction of shipping emission in port: A bibliometric analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    6. Kivimaa, Paula & Rogge, Karoline S., 2022. "Interplay of policy experimentation and institutional change in sustainability transitions: The case of mobility as a service in Finland," Research Policy, Elsevier, vol. 51(1).
    7. Xu, Haonan & Liu, Jiaguo & Xu, Xiaofeng & Chen, Jihong & Yue, Xiaohang, 2024. "The impact of AI technology adoption on operational decision-making in competitive heterogeneous ports☆," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    8. Capellán-Pérez, Iñigo & Campos-Celador, Álvaro & Terés-Zubiaga, Jon, 2018. "Renewable Energy Cooperatives as an instrument towards the energy transition in Spain," Energy Policy, Elsevier, vol. 123(C), pages 215-229.
    9. Jingwen Qi & Hans Wang & Jianfeng Zheng, 2022. "Shore Power Deployment Problem—A Case Study of a Chinese Container Shipping Network," Sustainability, MDPI, vol. 14(11), pages 1-13, June.
    10. Radtke, Jörg & Scherhaufer, Patrick, 2022. "A social science perspective on conflicts in the energy transition: An introduction to the special issue," Utilities Policy, Elsevier, vol. 78(C).
    11. Geels, Frank W. & Ayoub, Martina, 2023. "A socio-technical transition perspective on positive tipping points in climate change mitigation: Analysing seven interacting feedback loops in offshore wind and electric vehicles acceleration," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    12. Laura M. Pereira & Scott Drimie & Kristi Maciejewski & Patrick Bon Tonissen & Reinette (Oonsie) Biggs, 2020. "Food System Transformation: Integrating a Political–Economy and Social–Ecological Approach to Regime Shifts," IJERPH, MDPI, vol. 17(4), pages 1-20, February.
    13. Lee, Junmin & Kim, Keungoui & Kim, Jiyong & Hwang, Junseok, 2022. "The relationship between shared mobility and regulation in South Korea: A system dynamics approach from the socio-technical transitions perspective," Technovation, Elsevier, vol. 109(C).
    14. Kriechbaum, Michael & Posch, Alfred & Hauswiesner, Angelika, 2021. "Hype cycles during socio-technical transitions: The dynamics of collective expectations about renewable energy in Germany," Research Policy, Elsevier, vol. 50(9).
    15. Gruber, Mario, 2020. "An evolutionary perspective on adoption-diffusion theory," Journal of Business Research, Elsevier, vol. 116(C), pages 535-541.
    16. Bjerkan, Kristin Ystmark & Seter, Hanne, 2021. "Policy and politics in energy transitions. A case study on shore power in Oslo," Energy Policy, Elsevier, vol. 153(C).
    17. Sara Helen Kaweesa & Hamid El Bilali & Willibald Loiskandl, 2021. "Analysing the socio-technical transition to conservation agriculture in Uganda through the lens of the multi-level perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7606-7626, May.
    18. Johansen, Katinka & Johra, Hicham, 2022. "A niche technique overlooked in the Danish district heating sector? Exploring socio-technical perspectives of short-term thermal energy storage for building energy flexibility," Energy, Elsevier, vol. 256(C).
    19. Paula Kivimaa & Karoline S. Rogge, 2020. "Interplay of Policy Experimentation and Institutional Change in Transformative Policy Mixes: The Case of Mobility as a Service in Finland," SPRU Working Paper Series 2020-17, SPRU - Science Policy Research Unit, University of Sussex Business School.
    20. Jano-Ito, Marco A. & Crawford-Brown, Douglas, 2016. "Socio-technical analysis of the electricity sector of Mexico: Its historical evolution and implications for a transition towards low-carbon development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 567-590.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:192:y:2024:i:c:s1366554524003442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.