IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223029109.html
   My bibliography  Save this article

A novel prediction method of fuel consumption for wing-diesel hybrid vessels based on feature construction

Author

Listed:
  • Ruan, Zhang
  • Huang, Lianzhong
  • Wang, Kai
  • Ma, Ranqi
  • Wang, Zhongyi
  • Zhang, Rui
  • Zhao, Haoyang
  • Wang, Cong

Abstract

Accurate fuel consumption prediction is essential for optimizing the operation of wing-diesel hybrid vessels and improving energy efficiency. This paper proposes a grey box model (GBM) for wing-diesel hybrid vessel fuel consumption prediction based on feature construction. Both parallel and series grey box modelling methods, as well as six machine learning (ML) algorithms are adopted to establish twelve combinations of prediction models. Then, a feature construction method based on the aerodynamic performance of the wing and the energy relationship of the hybrid system is proposed. Three types of wing features, namely wing thrust, wing thrust power, and wing fuel consumption savings are constructed and introduced into each combination respectively. Finally, based on noon report data of a wing-diesel hybrid vessel, the combinations are trained and validated. The best combination is obtained by considering the root mean square error (RMSE), which is parallel modeling method, random forest (RF) algorithm, and wing fuel consumption savings feature. Its RMSE decreased by 41.7 % compared to the white box model (WBM). Therefore, the GBM proposed in this paper can predict the daily fuel consumption of wing-diesel hybrid vessels with high accuracy, facilitating operational optimization and contributing to the greenization and decarbonization of the shipping industry.

Suggested Citation

  • Ruan, Zhang & Huang, Lianzhong & Wang, Kai & Ma, Ranqi & Wang, Zhongyi & Zhang, Rui & Zhao, Haoyang & Wang, Cong, 2024. "A novel prediction method of fuel consumption for wing-diesel hybrid vessels based on feature construction," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029109
    DOI: 10.1016/j.energy.2023.129516
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223029109
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129516?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.