IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v315y2025ics0360544225000787.html
   My bibliography  Save this article

A novel grey box model for ship fuel consumption prediction adapted to complex navigating conditions

Author

Listed:
  • Fan, Ailong
  • Wang, Yifu
  • Yang, Liu
  • Yang, Zhiyong
  • Hu, Zhihui

Abstract

Ship fuel consumption prediction is critical to improving energy efficiency in the shipping industry. In this paper, a grey box model is proposed, which integrates a mechanistic and data-driven method based on a strategy of classification and weighting of navigating conditions and provides accurate fuel consumption predictions for dynamic navigating conditions. First, a physical model of the ship is constructed, while using historical operational data to build three data-driven models: genetic algorithms-backpropagation neural networks, particle swarm optimisation-backpropagation neural networks, and random forest algorithms. The input navigating conditions are then divided into four groups based on the errors predicted by these models. Particle swarm optimisation-random forest method was used for classification prediction. Finally, Bayesian optimisation determines the optimal weight ratio for each category label through weighted aggregation to generate the final fuel consumption prediction. The results indicated that this model decreases RMSE, MSE, MAE, and MAPE by 1.6651, 21.9337, 1.5524, and 4.9015 %, respectively, and increases R2 by 0.0325. The standard deviation of error for upstream and downstream navigations is 5.8948 and 1.7916, which is better than the performance of a single sub-model. Through five cross-validations, the model always shows superior performance in the test data set, which further verifies its stability.

Suggested Citation

  • Fan, Ailong & Wang, Yifu & Yang, Liu & Yang, Zhiyong & Hu, Zhihui, 2025. "A novel grey box model for ship fuel consumption prediction adapted to complex navigating conditions," Energy, Elsevier, vol. 315(C).
  • Handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225000787
    DOI: 10.1016/j.energy.2025.134436
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225000787
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134436?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Xi & Yan, Ran & Xu, Lang & Wang, Shuaian, 2024. "Accuracy and applicability of ship's fuel consumption prediction models: A comprehensive comparative analysis," Energy, Elsevier, vol. 310(C).
    2. Sensen Zhang & Zhenggang Huo & Chencheng Zhai, 2022. "Building Carbon Emission Scenario Prediction Using STIRPAT and GA-BP Neural Network Model," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    3. Sapnken, Flavian Emmanuel & Hong, Kwon Ryong & Chopkap Noume, Hermann & Tamba, Jean Gaston, 2024. "A grey prediction model optimized by meta-heuristic algorithms and its application in forecasting carbon emissions from road fuel combustion," Energy, Elsevier, vol. 302(C).
    4. Pala, Zeydin, 2023. "Comparative study on monthly natural gas vehicle fuel consumption and industrial consumption using multi-hybrid forecast models," Energy, Elsevier, vol. 263(PC).
    5. Fan, Ailong & Wang, Junteng & He, Yapeng & Perčić, Maja & Vladimir, Nikola & Yang, Liu, 2021. "Decarbonising inland ship power system: Alternative solution and assessment method," Energy, Elsevier, vol. 226(C).
    6. Wang, Shuaian & Qi, Jingwen & Laporte, Gilbert, 2022. "Governmental subsidy plan modeling and optimization for liquefied natural gas as fuel for maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 304-321.
    7. Meng, Qiang & Du, Yuquan & Wang, Yadong, 2016. "Shipping log data based container ship fuel efficiency modeling," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 207-229.
    8. Planakis, Nikolaos & Papalambrou, George & Kyrtatos, Nikolaos, 2022. "Ship energy management system development and experimental evaluation utilizing marine loading cycles based on machine learning techniques," Applied Energy, Elsevier, vol. 307(C).
    9. Lan, Tian & Huang, Lianzhong & Ma, Ranqi & Wang, Kai & Ruan, Zhang & Wu, Jianyi & Li, Xiaowu & Chen, Li, 2025. "A robust method of dual adaptive prediction for ship fuel consumption based on polymorphic particle swarm algorithm driven," Applied Energy, Elsevier, vol. 379(C).
    10. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    11. Wang, Kai & Liu, Xing & Guo, Xin & Wang, Jianhang & Wang, Zhuang & Huang, Lianzhong, 2024. "A novel high-precision and self-adaptive prediction method for ship energy consumption based on the multi-model fusion approach," Energy, Elsevier, vol. 310(C).
    12. Yan, Ran & Wang, Shuaian & Psaraftis, Harilaos N., 2021. "Data analytics for fuel consumption management in maritime transportation: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruan, Zhang & Huang, Lianzhong & Li, Daize & Ma, Ranqi & Wang, Kai & Zhang, Rui & Zhao, Haoyang & Wu, Jianyi & Li, Xiaowu, 2025. "A novel dual-stage grey-box stacking method for significantly improving the extrapolation performance of ship fuel consumption prediction models," Energy, Elsevier, vol. 318(C).
    2. Nguyen, Son & Fu, Xiuju & Ogawa, Daichi & Zheng, Qin, 2023. "An application-oriented testing regime and multi-ship predictive modeling for vessel fuel consumption prediction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    3. Ghosh, Indranil & De, Arijit, 2024. "Maritime Fuel Price Prediction of European Ports using Least Square Boosting and Facebook Prophet: Additional Insights from Explainable Artificial Intelligence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
    4. Kondratenko, Aleksander A. & Zhang, Mingyang & Tavakoli, Sasan & Altarriba, Elias & Hirdaris, Spyros, 2025. "Existing technologies and scientific advancements to decarbonize shipping by retrofitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    5. Ding, Yanyan & Yang, Dong, 2025. "Should an electric vehicle manufacturer buy its own ship? Investment and pricing strategies under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 195(C).
    6. Tan, Zhijia & Zeng, Xianyang & Shao, Shuai & Chen, Jihong & Wang, Hua, 2022. "Scrubber installation and green fuel for inland river ships with non-identical streamflow," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    7. Li, Zhijun & Fei, Jiangang & Du, Yuquan & Ong, Kok-Leong & Arisian, Sobhan, 2024. "A near real-time carbon accounting framework for the decarbonization of maritime transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).
    8. Han, Peixiu & Liu, Zhongbo & Li, Chi & Sun, Zhuo & Yan, Chunxin, 2024. "A novel federated learning-based two-stage approach for ship energy consumption optimization considering both shipping data security and statistical heterogeneity," Energy, Elsevier, vol. 309(C).
    9. Yan, Ran & Yang, Dong & Wang, Tianyu & Mo, Haoyu & Wang, Shuaian, 2024. "Improving ship energy efficiency: Models, methods, and applications," Applied Energy, Elsevier, vol. 368(C).
    10. Yan, Ran & Wang, Shuaian & Psaraftis, Harilaos N., 2021. "Data analytics for fuel consumption management in maritime transportation: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    11. Beullens, Patrick & Ge, Fangsheng & Hudson, Dominic, 2023. "The economic ship speed under time charter contract—A cash flow approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    12. Luo, Xi & Yan, Ran & Xu, Lang & Wang, Shuaian, 2024. "Accuracy and applicability of ship's fuel consumption prediction models: A comprehensive comparative analysis," Energy, Elsevier, vol. 310(C).
    13. Lan, Tian & Huang, Lianzhong & Ma, Ranqi & Wang, Kai & Ruan, Zhang & Wu, Jianyi & Li, Xiaowu & Chen, Li, 2025. "A robust method of dual adaptive prediction for ship fuel consumption based on polymorphic particle swarm algorithm driven," Applied Energy, Elsevier, vol. 379(C).
    14. Ruan, Zhang & Huang, Lianzhong & Wang, Kai & Ma, Ranqi & Wang, Zhongyi & Zhang, Rui & Zhao, Haoyang & Wang, Cong, 2024. "A novel prediction method of fuel consumption for wing-diesel hybrid vessels based on feature construction," Energy, Elsevier, vol. 286(C).
    15. Wen, Shuli & Dong, Zhixing & Zhao, Tianyang & Zhu, Miao & Huang, Yuqing, 2024. "Hierarchical game theory-based optimal power management for both seaports and ships," Energy, Elsevier, vol. 313(C).
    16. Tayfun Uyanık & Nur Najihah Abu Bakar & Özcan Kalenderli & Yasin Arslanoğlu & Josep M. Guerrero & Abderezak Lashab, 2023. "A Data-Driven Approach for Generator Load Prediction in Shipboard Microgrid: The Chemical Tanker Case Study," Energies, MDPI, vol. 16(13), pages 1-20, June.
    17. Yang, Ying & Liu, Yang & Li, Guorong & Zhang, Zekun & Liu, Yanbin, 2024. "Harnessing the power of Machine learning for AIS Data-Driven maritime Research: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    18. Niu, Baozhuang & Dong, Jian & Wang, Hongzhi, 2024. "Smart port vs. port integration to mitigate congestion: ESG performance and data validation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).
    19. Xinyu Li & Yi Zuo & Junhao Jiang, 2022. "Application of Regression Analysis Using Broad Learning System for Time-Series Forecast of Ship Fuel Consumption," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    20. Meng, Bin & Chen, Shuiyang & Haralambides, Hercules & Kuang, Haibo & Fan, Lidong, 2023. "Information spillovers between carbon emissions trading prices and shipping markets: A time-frequency analysis," Energy Economics, Elsevier, vol. 120(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225000787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.