A robust method of dual adaptive prediction for ship fuel consumption based on polymorphic particle swarm algorithm driven
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.124911
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hu, Chao & Jain, Gaurav & Zhang, Puqiang & Schmidt, Craig & Gomadam, Parthasarathy & Gorka, Tom, 2014. "Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery," Applied Energy, Elsevier, vol. 129(C), pages 49-55.
- Wen, Xiaoqiang & Li, Kaichuang & Wang, Jianguo, 2023. "NOx emission predicting for coal-fired boilers based on ensemble learning methods and optimized base learners," Energy, Elsevier, vol. 264(C).
- Qian, Jing & Sun, Xiangyu & Zhong, Xiaohui & Zeng, Jiajun & Xu, Fei & Zhou, Teng & Shi, Kezhong & Li, Qingan, 2024. "Multi-objective optimization design of the wind-to-heat system blades based on the Particle Swarm Optimization algorithm," Applied Energy, Elsevier, vol. 355(C).
- Qu, Zhijian & Li, Jian & Hou, Xinxing & Gui, Jianglin, 2023. "A D-stacking dual-fusion, spatio-temporal graph deep neural network based on a multi-integrated overlay for short-term wind-farm cluster power multi-step prediction," Energy, Elsevier, vol. 281(C).
- Nguyen, Son & Fu, Xiuju & Ogawa, Daichi & Zheng, Qin, 2023. "An application-oriented testing regime and multi-ship predictive modeling for vessel fuel consumption prediction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
- Park, Chybyung & Jeong, Byongug & Zhou, Peilin & Jang, Hayoung & Kim, Seongwan & Jeon, Hyeonmin & Nam, Dong & Rashedi, Ahmad, 2022. "Live-Life cycle assessment of the electric propulsion ship using solar PV," Applied Energy, Elsevier, vol. 309(C).
- Xie, Peilin & Tan, Sen & Bazmohammadi, Najmeh & Guerrero, Josep. M. & Vasquez, Juan. C. & Alcala, Jose Matas & Carreño, Jorge El Mariachet, 2022. "A distributed real-time power management scheme for shipboard zonal multi-microgrid system," Applied Energy, Elsevier, vol. 317(C).
- Shang, Gang & Xu, Liyun & Tian, Jinzhu & Cai, Dongwei & Xu, Zhun & Zhou, Zhuo, 2023. "A real-time green construction optimization strategy for engineering vessels considering fuel consumption and productivity: A case study on a cutter suction dredger," Energy, Elsevier, vol. 274(C).
- Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
- Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos & Boulougouris, Evangelos, 2022. "Decision support methods for sustainable ship energy systems: A state-of-the-art review," Energy, Elsevier, vol. 239(PC).
- Wang, Shuaian & Meng, Qiang, 2012. "Sailing speed optimization for container ships in a liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 701-714.
- Ruan, Zhang & Huang, Lianzhong & Wang, Kai & Ma, Ranqi & Wang, Zhongyi & Zhang, Rui & Zhao, Haoyang & Wang, Cong, 2024. "A novel prediction method of fuel consumption for wing-diesel hybrid vessels based on feature construction," Energy, Elsevier, vol. 286(C).
- Sun, Jian & Liu, Gang & Sun, Boyang & Xiao, Gang, 2021. "Light-stacking strengthened fusion based building energy consumption prediction framework via variable weight feature selection," Applied Energy, Elsevier, vol. 303(C).
- Wang, Kai & Hua, Yu & Huang, Lianzhong & Guo, Xin & Liu, Xing & Ma, Zhongmin & Ma, Ranqi & Jiang, Xiaoli, 2023. "A novel GA-LSTM-based prediction method of ship energy usage based on the characteristics analysis of operational data," Energy, Elsevier, vol. 282(C).
- Zhang, Tianren & Huang, Yuping & Liao, Hui & Liang, Yu, 2023. "A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network," Applied Energy, Elsevier, vol. 351(C).
- Elizabeth Michael, Neethu & Hasan, Shazia & Al-Durra, Ahmed & Mishra, Manohar, 2022. "Short-term solar irradiance forecasting based on a novel Bayesian optimized deep Long Short-Term Memory neural network," Applied Energy, Elsevier, vol. 324(C).
- Chen, Xinqiang & Lv, Siying & Shang, Wen-long & Wu, Huafeng & Xian, Jiangfeng & Song, Chengcheng, 2024. "Ship energy consumption analysis and carbon emission exploitation via spatial-temporal maritime data," Applied Energy, Elsevier, vol. 360(C).
- Li, Xuetao & Wang, Ziwei & Yang, Chengying & Bozkurt, Ayhan, 2024. "An advanced framework for net electricity consumption prediction: Incorporating novel machine learning models and optimization algorithms," Energy, Elsevier, vol. 296(C).
- Zhu, Jianyun & Chen, Li, 2023. "A probabilistic multi-objective design method of sail-photovoltaic-hybrid power system for an unmanned ocean surveillance trimaran," Applied Energy, Elsevier, vol. 350(C).
- Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
- Agrawal, Rahul Kumar & Muchahary, Frankle & Tripathi, Madan Mohan, 2019. "Ensemble of relevance vector machines and boosted trees for electricity price forecasting," Applied Energy, Elsevier, vol. 250(C), pages 540-548.
- Yan, Ran & Wang, Shuaian & Psaraftis, Harilaos N., 2021. "Data analytics for fuel consumption management in maritime transportation: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fan, Ailong & Wang, Yifu & Yang, Liu & Yang, Zhiyong & Hu, Zhihui, 2025. "A novel grey box model for ship fuel consumption prediction adapted to complex navigating conditions," Energy, Elsevier, vol. 315(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Han, Peixiu & Liu, Zhongbo & Li, Chi & Sun, Zhuo & Yan, Chunxin, 2024. "A novel federated learning-based two-stage approach for ship energy consumption optimization considering both shipping data security and statistical heterogeneity," Energy, Elsevier, vol. 309(C).
- Li, Zhijun & Fei, Jiangang & Du, Yuquan & Ong, Kok-Leong & Arisian, Sobhan, 2024. "A near real-time carbon accounting framework for the decarbonization of maritime transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).
- Nguyen, Son & Fu, Xiuju & Ogawa, Daichi & Zheng, Qin, 2023. "An application-oriented testing regime and multi-ship predictive modeling for vessel fuel consumption prediction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
- Luo, Xi & Yan, Ran & Xu, Lang & Wang, Shuaian, 2024. "Accuracy and applicability of ship's fuel consumption prediction models: A comprehensive comparative analysis," Energy, Elsevier, vol. 310(C).
- Xinyu Li & Yi Zuo & Junhao Jiang, 2022. "Application of Regression Analysis Using Broad Learning System for Time-Series Forecast of Ship Fuel Consumption," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
- Ghosh, Indranil & De, Arijit, 2024. "Maritime Fuel Price Prediction of European Ports using Least Square Boosting and Facebook Prophet: Additional Insights from Explainable Artificial Intelligence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
- Dong, Xianzhou & Guo, Weiyong & Zhou, Cheng & Luo, Yongqiang & Tian, Zhiyong & Zhang, Limao & Wu, Xiaoying & Liu, Baobing, 2024. "Hybrid model for robust and accurate forecasting building electricity demand combining physical and data-driven methods," Energy, Elsevier, vol. 311(C).
- Yan, Ran & Yang, Dong & Wang, Tianyu & Mo, Haoyu & Wang, Shuaian, 2024. "Improving ship energy efficiency: Models, methods, and applications," Applied Energy, Elsevier, vol. 368(C).
- Yan, Ran & Wang, Shuaian & Psaraftis, Harilaos N., 2021. "Data analytics for fuel consumption management in maritime transportation: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
- Guo, Yuhan & Wang, Yiyang & Chen, Yuhan & Wu, Lingxiao & Mao, Wengang, 2024. "Learning-based Pareto-optimum routing of ships incorporating uncertain meteorological and oceanographic forecasts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
- Wang, Shuaian & Yan, Ran, 2023. "Fundamental challenge and solution methods in prescriptive analytics for freight transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
- Xu, Lijie & Hu, Hui & Ji, Jie & Cai, Jingyong & Dai, Leyang, 2024. "Hybrid energy saving performance of translucent CdTe photovoltaic window on small ship under sailing condition," Energy, Elsevier, vol. 295(C).
- Wang, Kai & Liu, Xing & Guo, Xin & Wang, Jianhang & Wang, Zhuang & Huang, Lianzhong, 2024. "A novel high-precision and self-adaptive prediction method for ship energy consumption based on the multi-model fusion approach," Energy, Elsevier, vol. 310(C).
- Fan, Ailong & Wang, Yifu & Yang, Liu & Yang, Zhiyong & Hu, Zhihui, 2025. "A novel grey box model for ship fuel consumption prediction adapted to complex navigating conditions," Energy, Elsevier, vol. 315(C).
- Ruan, Zhang & Huang, Lianzhong & Wang, Kai & Ma, Ranqi & Wang, Zhongyi & Zhang, Rui & Zhao, Haoyang & Wang, Cong, 2024. "A novel prediction method of fuel consumption for wing-diesel hybrid vessels based on feature construction," Energy, Elsevier, vol. 286(C).
- Wang, Kai & Li, Zhongwei & Zhang, Rui & Ma, Ranqi & Huang, Lianzhong & Wang, Zhuang & Jiang, Xiaoli, 2025. "Computational fluid dynamics-based ship energy-saving technologies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
- Tan, Zhijia & Zeng, Xianyang & Shao, Shuai & Chen, Jihong & Wang, Hua, 2022. "Scrubber installation and green fuel for inland river ships with non-identical streamflow," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
- Niu, Baozhuang & Dong, Jian & Wang, Hongzhi, 2024. "Smart port vs. port integration to mitigate congestion: ESG performance and data validation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).
- Faramarz Saghi & Mustafa Jahangoshai Rezaee, 2023. "Integrating Wavelet Decomposition and Fuzzy Transformation for Improving the Accuracy of Forecasting Crude Oil Price," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 559-591, February.
- Cheng, Fang & Liu, Hui, 2024. "Multi-step electric vehicles charging loads forecasting: An autoformer variant with feature extraction, frequency enhancement, and error correction blocks," Applied Energy, Elsevier, vol. 376(PB).
More about this item
Keywords
Ship fuel consumption prediction; Particle swarm algorithm; Blending fusion strategy; Adaptive prediction; Cascade optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924022943. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.