IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v350y2023ics0306261923009686.html
   My bibliography  Save this article

A probabilistic multi-objective design method of sail-photovoltaic-hybrid power system for an unmanned ocean surveillance trimaran

Author

Listed:
  • Zhu, Jianyun
  • Chen, Li

Abstract

Considering the abundant wind and solar energy resources on waters, this paper integrates wind assistant propulsion and photovoltaic technology with ship electric power system as sail-photovoltaic-hybrid power system (sail-PV-HPS). When properly designed, sail-PV-HPS can present environmental and economic benefits compared with conventional sail-diesel power system. However, the optimal design of sail-PV-HPS is a complex task due to environmental uncertainties. In order to fill such gap, this paper proposes a probabilistic optimization method to determine the size parameters of sail-PV-HPS, pursing minimum GHG emission and lifecycle cost. Two pairs of joint distributions of wind speed and wind direction as well as solar irradiance and ambient temperature are established based on coupla function considering the interconnection and seasonal characteristics of the meteorology variables. The performance of the proposed approach is assessed by the retrofit of the power system of an unmanned ocean surveillance trimaran sailing in the Yellow Sea area. A deterministic optimization and a quasi-probabilistic optimization are performed to highlight the effect and importance of taking the uncertainties and their correlation into consideration. Results show that the sail-PV-HPS designed by the proposed probabilistic method outperforms the sail-PV-HPS given by the deterministic optimization and a quasi-probabilistic optimization, as well as, the original power system of the trimaran in terms of GHG emission and lifecycle cost.

Suggested Citation

  • Zhu, Jianyun & Chen, Li, 2023. "A probabilistic multi-objective design method of sail-photovoltaic-hybrid power system for an unmanned ocean surveillance trimaran," Applied Energy, Elsevier, vol. 350(C).
  • Handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923009686
    DOI: 10.1016/j.apenergy.2023.121604
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923009686
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121604?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dedes, Eleftherios K. & Hudson, Dominic A. & Turnock, Stephen R., 2012. "Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping," Energy Policy, Elsevier, vol. 40(C), pages 204-218.
    2. Zhu, Jianyun & Chen, Li & Wang, Xuefeng & Yu, Long, 2020. "Bi-level optimal sizing and energy management of hybrid electric propulsion systems," Applied Energy, Elsevier, vol. 260(C).
    3. Dufo-López, Rodolfo & Bernal-Agustín, José L. & Mendoza, Franklin, 2009. "Design and economical analysis of hybrid PV-wind systems connected to the grid for the intermittent production of hydrogen," Energy Policy, Elsevier, vol. 37(8), pages 3082-3095, August.
    4. Han, Qinkai & Hao, Zhuolin & Hu, Tao & Chu, Fulei, 2018. "Non-parametric models for joint probabilistic distributions of wind speed and direction data," Renewable Energy, Elsevier, vol. 126(C), pages 1032-1042.
    5. Xu, Liangfei & Mueller, Clemens David & Li, Jianqiu & Ouyang, Minggao & Hu, Zunyan, 2015. "Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles," Applied Energy, Elsevier, vol. 157(C), pages 664-674.
    6. Jianyun, Zhu & Li, Chen & Lijuan, Xia & Bin, Wang, 2019. "Bi-objective optimal design of plug-in hybrid electric propulsion system for ships," Energy, Elsevier, vol. 177(C), pages 247-261.
    7. Rezzouk, H. & Mellit, A., 2015. "Feasibility study and sensitivity analysis of a stand-alone photovoltaic–diesel–battery hybrid energy system in the north of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1134-1150.
    8. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    9. Roberts, Justo José & Marotta Cassula, Agnelo & Silveira, José Luz & da Costa Bortoni, Edson & Mendiburu, Andrés Z., 2018. "Robust multi-objective optimization of a renewable based hybrid power system," Applied Energy, Elsevier, vol. 223(C), pages 52-68.
    10. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    11. Yang, Hongxing & Wei, Zhou & Chengzhi, Lou, 2009. "Optimal design and techno-economic analysis of a hybrid solar-wind power generation system," Applied Energy, Elsevier, vol. 86(2), pages 163-169, February.
    12. Timothy E. Lipman & Jeffrey Lidicker, 2019. "Wind-assist marine demonstration for ferries: prospects for saving diesel fuel with wind power," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 22(1), pages 68-83.
    13. Helton, J.C. & Johnson, J.D. & Sallaberry, C.J. & Storlie, C.B., 2006. "Survey of sampling-based methods for uncertainty and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1175-1209.
    14. Barone, G. & Buonomano, A. & Forzano, C. & Palombo, A., 2021. "Implementing the dynamic simulation approach for the design and optimization of ships energy systems: Methodology and applicability to modern cruise ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    15. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    16. Zhou, Wei & Yang, Hongxing & Fang, Zhaohong, 2007. "A novel model for photovoltaic array performance prediction," Applied Energy, Elsevier, vol. 84(12), pages 1187-1198, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Jianyun & Chen, Li & Wang, Xuefeng & Yu, Long, 2020. "Bi-level optimal sizing and energy management of hybrid electric propulsion systems," Applied Energy, Elsevier, vol. 260(C).
    2. Dedes, Eleftherios K. & Hudson, Dominic A. & Turnock, Stephen R., 2016. "Investigation of Diesel Hybrid systems for fuel oil reduction in slow speed ocean going ships," Energy, Elsevier, vol. 114(C), pages 444-456.
    3. Zhu, Jianyun & Chen, Li & Wang, Bin & Xia, Lijuan, 2018. "Optimal design of a hybrid electric propulsive system for an anchor handling tug supply vessel," Applied Energy, Elsevier, vol. 226(C), pages 423-436.
    4. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    5. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    6. Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Sun, Xiaojun & Yao, Chong & Song, Enzhe & Yang, Qidong & Yang, Xuchang, 2022. "Optimal control of transient processes in marine hybrid propulsion systems: Modeling, optimization and performance enhancement," Applied Energy, Elsevier, vol. 321(C).
    8. Maja Perčić & Nikola Vladimir & Marija Koričan, 2021. "Electrification of Inland Waterway Ships Considering Power System Lifetime Emissions and Costs," Energies, MDPI, vol. 14(21), pages 1-25, October.
    9. Han, Qinkai & Chu, Fulei, 2021. "Directional wind energy assessment of China based on nonparametric copula models," Renewable Energy, Elsevier, vol. 164(C), pages 1334-1349.
    10. Akinyele, D.O. & Rayudu, R.K., 2016. "Community-based hybrid electricity supply system: A practical and comparative approach," Applied Energy, Elsevier, vol. 171(C), pages 608-628.
    11. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    12. Mbodji, Abdoul K. & Ndiaye, Mamadou L. & Ndiaye, Papa A., 2016. "Decentralized control of the hybrid electrical system consumption: A multi-agent approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 972-978.
    13. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos & Boulougouris, Evangelos, 2022. "Decision support methods for sustainable ship energy systems: A state-of-the-art review," Energy, Elsevier, vol. 239(PC).
    14. Perčić, Maja & Frković, Lovro & Pukšec, Tomislav & Ćosić, Boris & Li, Oi Lun & Vladimir, Nikola, 2022. "Life-cycle assessment and life-cycle cost assessment of power batteries for all-electric vessels for short-sea navigation," Energy, Elsevier, vol. 251(C).
    15. Feng, Yanbiao & Dong, Zuomin, 2020. "Integrated design and control optimization of fuel cell hybrid mining truck with minimized lifecycle cost," Applied Energy, Elsevier, vol. 270(C).
    16. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2217-2235.
    17. Asma Mohamad Aris & Bahman Shabani, 2015. "Sustainable Power Supply Solutions for Off-Grid Base Stations," Energies, MDPI, vol. 8(10), pages 1-38, September.
    18. Upadhyay, Subho & Sharma, M.P., 2014. "A review on configurations, control and sizing methodologies of hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 47-63.
    19. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    20. Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923009686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.