IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i6p757-d99940.html
   My bibliography  Save this article

Wind Turbine Wake Mitigation through Blade Pitch Offset

Author

Listed:
  • Deepu Dilip

    (Wind Engineering and Renewable Energy Laboratory (WIRE), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland)

  • Fernando Porté-Agel

    (Wind Engineering and Renewable Energy Laboratory (WIRE), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland)

Abstract

The reduction in power output associated with complex turbine-wake interactions in wind farms necessitates the development of effective wake mitigation strategies. One approach to this end entails the downregulation of individual turbines from its maximum power point with the objective of optimizing the overall wind farm productivity. Downregulation via blade pitch offset has been of interest as a potential strategy, though the viability of this method is still not clear, especially in regard to its sensitivity to ambient turbulence. In this study, large-eddy simulations of a two-turbine arrangement, with the second turbine in the full wake of the first, were performed. The effects of varying the blade pitch angle of the upstream turbine on its wake characteristics, as well as the combined power of the two, were investigated. Of specific interest was the effect of turbulence intensity of the inflow on the efficacy of this method. Results showed enhanced wake recovery associated with pitching to stall, as opposed to pitching to feather, which delayed wake recovery. The increased wake recovery resulted in a noticeable increase in the power of the two-turbine configuration, only in conditions characterized by low turbulence in the incoming flow. Nevertheless, the low turbulence scenarios where the use of this method is favorable, are expected in realistic wind farms, suggesting its possible application for improved power generation.

Suggested Citation

  • Deepu Dilip & Fernando Porté-Agel, 2017. "Wind Turbine Wake Mitigation through Blade Pitch Offset," Energies, MDPI, vol. 10(6), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:757-:d:99940
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/6/757/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/6/757/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ebrahimi, F.M. & Khayatiyan, A. & Farjah, E., 2016. "A novel optimizing power control strategy for centralized wind farm control system," Renewable Energy, Elsevier, vol. 86(C), pages 399-408.
    2. Wu, Yu-Ting & Porté-Agel, Fernando, 2015. "Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm," Renewable Energy, Elsevier, vol. 75(C), pages 945-955.
    3. Mahdi Abkar & Fernando Porté-Agel, 2013. "The Effect of Free-Atmosphere Stratification on Boundary-Layer Flow and Power Output from Very Large Wind Farms," Energies, MDPI, vol. 6(5), pages 1-24, April.
    4. Yu-Ting Wu & Fernando Porté-Agel, 2012. "Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study," Energies, MDPI, vol. 5(12), pages 1-23, December.
    5. Wang, Longyan & Tan, Andy & Gu, Yuantong, 2016. "A novel control strategy approach to optimally design a wind farm layout," Renewable Energy, Elsevier, vol. 95(C), pages 10-21.
    6. Adaramola, M.S. & Krogstad, P.-Å., 2011. "Experimental investigation of wake effects on wind turbine performance," Renewable Energy, Elsevier, vol. 36(8), pages 2078-2086.
    7. Lee, Jaejoon & Son, Eunkuk & Hwang, Byungho & Lee, Soogab, 2013. "Blade pitch angle control for aerodynamic performance optimization of a wind farm," Renewable Energy, Elsevier, vol. 54(C), pages 124-130.
    8. Fernando Porté-Agel & Yu-Ting Wu & Chang-Hung Chen, 2013. "A Numerical Study of the Effects of Wind Direction on Turbine Wakes and Power Losses in a Large Wind Farm," Energies, MDPI, vol. 6(10), pages 1-17, October.
    9. Gao, Richie & Gao, Zhiwei, 2016. "Pitch control for wind turbine systems using optimization, estimation and compensation," Renewable Energy, Elsevier, vol. 91(C), pages 501-515.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lopez, Daniel & Kuo, Jim & Li, Ni, 2019. "A novel wake model for yawed wind turbines," Energy, Elsevier, vol. 178(C), pages 158-167.
    2. Yin, Xiuxing & Zhao, Xiaowei & Lin, Jin & Karcanias, Aris, 2020. "Reliability aware multi-objective predictive control for wind farm based on machine learning and heuristic optimizations," Energy, Elsevier, vol. 202(C).
    3. Daniel Houck & Edwin A. Cowen, 2022. "Power and Flow Analysis of Axial Induction Control in an Array of Model-Scale Wind Turbines," Energies, MDPI, vol. 15(15), pages 1-27, July.
    4. Yin, Xiuxing & Zhang, Wencan & Jiang, Zhansi & Pan, Li, 2020. "Data-driven multi-objective predictive control of offshore wind farm based on evolutionary optimization," Renewable Energy, Elsevier, vol. 160(C), pages 974-986.
    5. Jong-Hyeon Shin & Jong-Hwi Lee & Se-Myong Chang, 2019. "A Simplified Numerical Model for the Prediction of Wake Interaction in Multiple Wind Turbines," Energies, MDPI, vol. 12(21), pages 1-14, October.
    6. Yu-Ting Wu & Chang-Yu Lin & Che-Ming Hsu, 2020. "An Experimental Investigation of Wake Characteristics and Power Generation Efficiency of a Small Wind Turbine under Different Tip Speed Ratios," Energies, MDPI, vol. 13(8), pages 1-19, April.
    7. De-Zhi Wei & Ni-Na Wang & De-Cheng Wan, 2021. "Modelling Yawed Wind Turbine Wakes: Extension of a Gaussian-Based Wake Model," Energies, MDPI, vol. 14(15), pages 1-26, July.
    8. Javier Serrano González & Bruno López & Martín Draper, 2021. "Optimal Pitch Angle Strategy for Energy Maximization in Offshore Wind Farms Considering Gaussian Wake Model," Energies, MDPI, vol. 14(4), pages 1-18, February.
    9. Xiong, Xue-Lu & Lyu, Pin & Chen, Wen-Li & Li, Hui, 2020. "Self-similarity in the wake of a semi-submersible offshore wind turbine considering the interaction with the wake of supporting platform," Renewable Energy, Elsevier, vol. 156(C), pages 328-341.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amin Niayifar & Fernando Porté-Agel, 2016. "Analytical Modeling of Wind Farms: A New Approach for Power Prediction," Energies, MDPI, vol. 9(9), pages 1-13, September.
    2. Tristan Revaz & Fernando Porté-Agel, 2021. "Large-Eddy Simulation of Wind Turbine Flows: A New Evaluation of Actuator Disk Models," Energies, MDPI, vol. 14(13), pages 1-22, June.
    3. Jacob R. West & Sanjiva K. Lele, 2020. "Wind Turbine Performance in Very Large Wind Farms: Betz Analysis Revisited," Energies, MDPI, vol. 13(5), pages 1-25, March.
    4. Pawar, Suraj & Sharma, Ashesh & Vijayakumar, Ganesh & Bay, Chrstopher J. & Yellapantula, Shashank & San, Omer, 2022. "Towards multi-fidelity deep learning of wind turbine wakes," Renewable Energy, Elsevier, vol. 200(C), pages 867-879.
    5. Ka Ling Wu & Fernando Porté-Agel, 2017. "Flow Adjustment Inside and Around Large Finite-Size Wind Farms," Energies, MDPI, vol. 10(12), pages 1-23, December.
    6. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel," Energy, Elsevier, vol. 166(C), pages 819-833.
    7. Li, Li & Wang, Bing & Ge, Mingwei & Huang, Zhi & Li, Xintao & Liu, Yongqian, 2023. "A novel superposition method for streamwise turbulence intensity of wind-turbine wakes," Energy, Elsevier, vol. 276(C).
    8. Gionfra, Nicolò & Sandou, Guillaume & Siguerdidjane, Houria & Faille, Damien & Loevenbruck, Philippe, 2019. "Wind farm distributed PSO-based control for constrained power generation maximization," Renewable Energy, Elsevier, vol. 133(C), pages 103-117.
    9. Barlas, Emre & Wu, Ka Ling & Zhu, Wei Jun & Porté-Agel, Fernando & Shen, Wen Zhong, 2018. "Variability of wind turbine noise over a diurnal cycle," Renewable Energy, Elsevier, vol. 126(C), pages 791-800.
    10. Dhiman, Harsh S. & Deb, Dipankar & Foley, Aoife M., 2020. "Lidar assisted wake redirection in wind farms: A data driven approach," Renewable Energy, Elsevier, vol. 152(C), pages 484-493.
    11. Lo Brutto, Ottavio A. & Guillou, Sylvain S. & Thiébot, Jérôme & Gualous, Hamid, 2017. "Assessing the effectiveness of a global optimum strategy within a tidal farm for power maximization," Applied Energy, Elsevier, vol. 204(C), pages 653-666.
    12. Tian, Linlin & Zhu, Weijun & Shen, Wenzhong & Song, Yilei & Zhao, Ning, 2017. "Prediction of multi-wake problems using an improved Jensen wake model," Renewable Energy, Elsevier, vol. 102(PB), pages 457-469.
    13. De-Zhi Wei & Ni-Na Wang & De-Cheng Wan, 2021. "Modelling Yawed Wind Turbine Wakes: Extension of a Gaussian-Based Wake Model," Energies, MDPI, vol. 14(15), pages 1-26, July.
    14. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    15. Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
    16. Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
    17. Yang, Shanghui & Deng, Xiaowei & Ti, Zilong & Yan, Bowen & Yang, Qingshan, 2022. "Cooperative yaw control of wind farm using a double-layer machine learning framework," Renewable Energy, Elsevier, vol. 193(C), pages 519-537.
    18. Hegazy, Amr & Blondel, Frédéric & Cathelain, Marie & Aubrun, Sandrine, 2022. "LiDAR and SCADA data processing for interacting wind turbine wakes with comparison to analytical wake models," Renewable Energy, Elsevier, vol. 181(C), pages 457-471.
    19. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
    20. Zhang, Jincheng & Zhao, Xiaowei, 2020. "Quantification of parameter uncertainty in wind farm wake modeling," Energy, Elsevier, vol. 196(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:757-:d:99940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.