IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v239y2025ics0960148124020901.html
   My bibliography  Save this article

Characterizing model uncertainties in simulated coast-to-offshore wind over the northeast U.S. using multi-platform measurements from the TCAP field campaign

Author

Listed:
  • Tai, Sheng-Lun
  • Gaudet, Brian
  • Feng, Sha
  • Krishnamurthy, Raghavendra
  • Berg, Larry K.
  • Fast, Jerome D.

Abstract

Numerical weather prediction models, such as the Weather Research and Forecasting model, are widely used to provide estimates of the offshore wind energy resource owing to their large spatial coverage compared to available observations. Nevertheless, spatiotemporal distribution of model biases is highly dependent on factors including model configuration, location, and the interplay of multiscale physical processes. Here we focus on the characterization of model uncertainties in simulated coast-to-offshore winds over the northeast United States by varying sea surface temperature (SST) forcings and surface layer (SL) and planetary boundary layer (PBL) parameterizations, as well as identifying biases that may be directly passed from initial and boundary conditions. Multiple measurements, including aircraft data collected during the U.S. Department of Energy's Two-Column Aerosol Project experiment, are used to constrain the model results, and facilitate quantitative comparisons. Our analysis indicates that while SST forcing has notable impacts on simulated air temperature and moisture within PBL, the modeled winds are in general more sensitive to the choices of SL and PBL physics than to SST. The model's forcing data not only controls the vertical dependence of wind speed errors, but also alters regional variability in the wind speed's spatial correlation, which underscores the impact of initial and boundary conditions on simulated winds. Coastal and offshore near-surface wind speed biases tend to exhibit much higher similarity in winter than in summer due to the presence of much stronger and more persistent synoptic wind conditions. This study highlights the importance of accurate atmospheric forcing and parameterization choices in improving wind forecasts and suggests the potential for extrapolating coastal wind biases to offshore locations, aiding wind energy forecasting and informing the third Wind Forecast Improvement Project.

Suggested Citation

  • Tai, Sheng-Lun & Gaudet, Brian & Feng, Sha & Krishnamurthy, Raghavendra & Berg, Larry K. & Fast, Jerome D., 2025. "Characterizing model uncertainties in simulated coast-to-offshore wind over the northeast U.S. using multi-platform measurements from the TCAP field campaign," Renewable Energy, Elsevier, vol. 239(C).
  • Handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124020901
    DOI: 10.1016/j.renene.2024.122022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124020901
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeanie A. Aird & Rebecca J. Barthelmie & Tristan J. Shepherd & Sara C. Pryor, 2022. "Occurrence of Low-Level Jets over the Eastern U.S. Coastal Zone at Heights Relevant to Wind Energy," Energies, MDPI, vol. 15(2), pages 1-20, January.
    2. Rebecca J. Barthelmie & Kaitlyn E. Dantuono & Emma J. Renner & Frederick L. Letson & Sara C. Pryor, 2021. "Extreme Wind and Waves in U.S. East Coast Offshore Wind Energy Lease Areas," Energies, MDPI, vol. 14(4), pages 1-25, February.
    3. Draxl, Caroline & Clifton, Andrew & Hodge, Bri-Mathias & McCaa, Jim, 2015. "The Wind Integration National Dataset (WIND) Toolkit," Applied Energy, Elsevier, vol. 151(C), pages 355-366.
    4. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal," Applied Energy, Elsevier, vol. 117(C), pages 116-126.
    5. Castorrini, Alessio & Gentile, Sabrina & Geraldi, Edoardo & Bonfiglioli, Aldo, 2023. "Investigations on offshore wind turbine inflow modelling using numerical weather prediction coupled with local-scale computational fluid dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yichao & Chen, Daoyi & Li, Sunwei & Chan, P.W., 2018. "Discerning the spatial variations in offshore wind resources along the coast of China via dynamic downscaling," Energy, Elsevier, vol. 160(C), pages 582-596.
    2. Zhang, Jie & Draxl, Caroline & Hopson, Thomas & Monache, Luca Delle & Vanvyve, Emilie & Hodge, Bri-Mathias, 2015. "Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods," Applied Energy, Elsevier, vol. 156(C), pages 528-541.
    3. Nagababu, Garlapati & Kachhwaha, Surendra Singh & Naidu, Natansh K. & Savsani, Vimal, 2017. "Application of reanalysis data to estimate offshore wind potential in EEZ of India based on marine ecosystem considerations," Energy, Elsevier, vol. 118(C), pages 622-631.
    4. Gadad, Sanjeev & Deka, Paresh Chandra, 2016. "Offshore wind power resource assessment using Oceansat-2 scatterometer data at a regional scale," Applied Energy, Elsevier, vol. 176(C), pages 157-170.
    5. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    6. Munir Ali Elfarra & Mustafa Kaya, 2018. "Comparison of Optimum Spline-Based Probability Density Functions to Parametric Distributions for the Wind Speed Data in Terms of Annual Energy Production," Energies, MDPI, vol. 11(11), pages 1-15, November.
    7. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    8. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    9. Cuevas-Figueroa, Gabriel & Stansby, Peter K. & Stallard, Timothy, 2022. "Accuracy of WRF for prediction of operational wind farm data and assessment of influence of upwind farms on power production," Energy, Elsevier, vol. 254(PB).
    10. Alain Ulazia & Ander Nafarrate & Gabriel Ibarra-Berastegi & Jon Sáenz & Sheila Carreno-Madinabeitia, 2019. "The Consequences of Air Density Variations over Northeastern Scotland for Offshore Wind Energy Potential," Energies, MDPI, vol. 12(13), pages 1-18, July.
    11. Tanner, Sophia & Burnett, Wesley & Maguire, Karen & Winikoff, Justin, 2024. "Blown Away: The Influence of Wind Farms on Agricultural Land Values," 2024 Annual Meeting, July 28-30, New Orleans, LA 343970, Agricultural and Applied Economics Association.
    12. Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2015. "Designing an index for assessing wind energy potential," Renewable Energy, Elsevier, vol. 83(C), pages 416-424.
    13. Denholm, Paul & Nunemaker, Jacob & Gagnon, Pieter & Cole, Wesley, 2020. "The potential for battery energy storage to provide peaking capacity in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1269-1277.
    14. Howard, B. & Waite, M. & Modi, V., 2017. "Current and near-term GHG emissions factors from electricity production for New York State and New York City," Applied Energy, Elsevier, vol. 187(C), pages 255-271.
    15. Mike Ludkovski & Glen Swindle & Eric Grannan, 2022. "Large Scale Probabilistic Simulation of Renewables Production," Papers 2205.04736, arXiv.org.
    16. Dhunny, A.Z. & Timmons, D.S. & Allam, Z. & Lollchund, M.R. & Cunden, T.S.M., 2020. "An economic assessment of near-shore wind farm development using a weather research forecast-based genetic algorithm model," Energy, Elsevier, vol. 201(C).
    17. Olaofe, Z.O., 2019. "Quantification of the near-surface wind conditions of the African coast: A comparative approach (satellite, NCEP CFSR and WRF-based)," Energy, Elsevier, vol. 189(C).
    18. Vinel, Alexander & Mortaz, Ebrahim, 2019. "Optimal pooling of renewable energy sources with a risk-averse approach: Implications for US energy portfolio," Energy Policy, Elsevier, vol. 132(C), pages 928-939.
    19. Yuan, Ran & Wang, Bo & Mao, Zhixin & Watada, Junzo, 2021. "Multi-objective wind power scenario forecasting based on PG-GAN," Energy, Elsevier, vol. 226(C).
    20. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Offshore winds and wind energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and buoys – A comparative study for the Iberian Peninsula Atlantic coast," Renewable Energy, Elsevier, vol. 102(PB), pages 433-444.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124020901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.