IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v226y2021ics0360544221006289.html
   My bibliography  Save this article

Multi-objective wind power scenario forecasting based on PG-GAN

Author

Listed:
  • Yuan, Ran
  • Wang, Bo
  • Mao, Zhixin
  • Watada, Junzo

Abstract

Accurate scenario forecasting of wind power is crucial to the day-ahead scheduling of power systems with large-scale renewable generation. However, the intermittence and fluctuation of wind energy bring great challenges to the improvement of prediction accuracy. Aiming at precisely modeling the uncertainty in wind power, a novel scenario forecasting method is proposed in this paper. First, Progressive Growing of Generative Adversarial Networks is leveraged to capture the complex temporal dynamics and pattern correlations. Second, wind power scenarios of the forecast day are achieved by solving a multi-objective scenario forecasting problem with progressive optimization-based Non-dominated Sorting Genetic Algorithm III. Finally, a real wind power dataset and a real power system scheduling problem are applied to justify the effectiveness of the research. Experimental results based on the dataset indicate that our method produces high-quality scenarios with richer details compared with existing research even if the given point forecast is inaccurate. Besides, different amounts of scenarios can be provided without sacrificing time efficiency, which follow the actual trend of wind power consistently and demonstrate great superiority in three evaluation metrics. Moreover, experimental results of the scheduling problem also prove that our method outperforms the others on expected total costs and unmet load amounts.

Suggested Citation

  • Yuan, Ran & Wang, Bo & Mao, Zhixin & Watada, Junzo, 2021. "Multi-objective wind power scenario forecasting based on PG-GAN," Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006289
    DOI: 10.1016/j.energy.2021.120379
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221006289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120379?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yao & Wang, Jianxue & Wang, Xifan, 2014. "Review on probabilistic forecasting of wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 255-270.
    2. Draxl, Caroline & Clifton, Andrew & Hodge, Bri-Mathias & McCaa, Jim, 2015. "The Wind Integration National Dataset (WIND) Toolkit," Applied Energy, Elsevier, vol. 151(C), pages 355-366.
    3. Bessa, Ricardo J. & Miranda, V. & Botterud, A. & Zhou, Z. & Wang, J., 2012. "Time-adaptive quantile-copula for wind power probabilistic forecasting," Renewable Energy, Elsevier, vol. 40(1), pages 29-39.
    4. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2020. "Spatial and temporal correlation analysis of wind power between different provinces in China," Energy, Elsevier, vol. 191(C).
    5. Pinson, P. & Girard, R., 2012. "Evaluating the quality of scenarios of short-term wind power generation," Applied Energy, Elsevier, vol. 96(C), pages 12-20.
    6. Wei, Hu & Hongxuan, Zhang & Yu, Dong & Yiting, Wang & Ling, Dong & Ming, Xiao, 2019. "Short-term optimal operation of hydro-wind-solar hybrid system with improved generative adversarial networks," Applied Energy, Elsevier, vol. 250(C), pages 389-403.
    7. Chen, Jun & Rabiti, Cristian, 2017. "Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems," Energy, Elsevier, vol. 120(C), pages 507-517.
    8. Zhang, Yu & Li, Yanting & Zhang, Guangyao, 2020. "Short-term wind power forecasting approach based on Seq2Seq model using NWP data," Energy, Elsevier, vol. 213(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anderson Mitterhofer Iung & Fernando Luiz Cyrino Oliveira & André Luís Marques Marcato, 2023. "A Review on Modeling Variable Renewable Energy: Complementarity and Spatial–Temporal Dependence," Energies, MDPI, vol. 16(3), pages 1-24, January.
    2. Dumas, Jonathan & Wehenkel, Antoine & Lanaspeze, Damien & Cornélusse, Bertrand & Sutera, Antonio, 2022. "A deep generative model for probabilistic energy forecasting in power systems: normalizing flows," Applied Energy, Elsevier, vol. 305(C).
    3. Wen, Honglin, 2024. "Probabilistic wind power forecasting resilient to missing values: An adaptive quantile regression approach," Energy, Elsevier, vol. 300(C).
    4. Zhao, Baining & Qian, Tong & Tang, Wenhu & Liang, Qiheng, 2022. "A data-enhanced distributionally robust optimization method for economic dispatch of integrated electricity and natural gas systems with wind uncertainty," Energy, Elsevier, vol. 243(C).
    5. Luo, Zheng & Lin, Xiaojie & Qiu, Tianyue & Li, Manjie & Zhong, Wei & Zhu, Lingkai & Liu, Shuangcui, 2024. "Investigation of hybrid adversarial-diffusion sample generation method of substations in district heating system," Energy, Elsevier, vol. 288(C).
    6. Zhang, Yunfei & Zhou, Zhihua & Liu, Junwei & Yuan, Jianjuan, 2022. "Data augmentation for improving heating load prediction of heating substation based on TimeGAN," Energy, Elsevier, vol. 260(C).
    7. Cao, Mengda & Zhang, Tao & Liu, Yajie & Zhang, Yajun & Wang, Yu & Li, Kaiwen, 2022. "An ensemble learning prognostic method for capacity estimation of lithium-ion batteries based on the V-IOWGA operator," Energy, Elsevier, vol. 257(C).
    8. Niu, Dongxiao & Sun, Lijie & Yu, Min & Wang, Keke, 2022. "Point and interval forecasting of ultra-short-term wind power based on a data-driven method and hybrid deep learning model," Energy, Elsevier, vol. 254(PA).
    9. Huang, Xiaoqiao & Li, Qiong & Tai, Yonghang & Chen, Zaiqing & Liu, Jun & Shi, Junsheng & Liu, Wuming, 2022. "Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM," Energy, Elsevier, vol. 246(C).
    10. Han, Shuo & Yuan, Yifan & He, Mengjiao & Zhao, Ziwen & Xu, Beibei & Chen, Diyi & Jurasz, Jakub, 2024. "A novel day-ahead scheduling model to unlock hydropower flexibility limited by vibration zones in hydropower-variable renewable energy hybrid system," Applied Energy, Elsevier, vol. 356(C).
    11. Hu, Jinxing & Li, Hongru, 2022. "A transfer learning-based scenario generation method for stochastic optimal scheduling of microgrid with newly-built wind farm," Renewable Energy, Elsevier, vol. 185(C), pages 1139-1151.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    2. Caputo, Antonio C. & Federici, Alessandro & Pelagagge, Pacifico M. & Salini, Paolo, 2023. "Offshore wind power system economic evaluation framework under aleatory and epistemic uncertainty," Applied Energy, Elsevier, vol. 350(C).
    3. Mike Ludkovski & Glen Swindle & Eric Grannan, 2022. "Large Scale Probabilistic Simulation of Renewables Production," Papers 2205.04736, arXiv.org.
    4. Florian Ziel & Kevin Berk, 2019. "Multivariate Forecasting Evaluation: On Sensitive and Strictly Proper Scoring Rules," Papers 1910.07325, arXiv.org.
    5. Chen, Jun & Rabiti, Cristian, 2017. "Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems," Energy, Elsevier, vol. 120(C), pages 507-517.
    6. Hu, Jinxing & Li, Hongru, 2022. "A transfer learning-based scenario generation method for stochastic optimal scheduling of microgrid with newly-built wind farm," Renewable Energy, Elsevier, vol. 185(C), pages 1139-1151.
    7. Sun, Mucun & Feng, Cong & Zhang, Jie, 2020. "Multi-distribution ensemble probabilistic wind power forecasting," Renewable Energy, Elsevier, vol. 148(C), pages 135-149.
    8. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    9. Ricardo J. Bessa & Corinna Möhrlen & Vanessa Fundel & Malte Siefert & Jethro Browell & Sebastian Haglund El Gaidi & Bri-Mathias Hodge & Umit Cali & George Kariniotakis, 2017. "Towards Improved Understanding of the Applicability of Uncertainty Forecasts in the Electric Power Industry," Energies, MDPI, vol. 10(9), pages 1-48, September.
    10. Iversen, Emil B. & Morales, Juan M. & Møller, Jan K. & Madsen, Henrik, 2016. "Short-term probabilistic forecasting of wind speed using stochastic differential equations," International Journal of Forecasting, Elsevier, vol. 32(3), pages 981-990.
    11. Jia Zhou & Hany Abdel-Khalik & Paul Talbot & Cristian Rabiti, 2021. "A Hybrid Energy System Workflow for Energy Portfolio Optimization," Energies, MDPI, vol. 14(15), pages 1-28, July.
    12. Hua Zhou & Huahua Wu & Chengjin Ye & Shijie Xiao & Jun Zhang & Xu He & Bo Wang, 2019. "Integration Capability Evaluation of Wind and Photovoltaic Generation in Power Systems Based on Temporal and Spatial Correlations," Energies, MDPI, vol. 12(1), pages 1-12, January.
    13. Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
    14. Ma, Chao & Xu, Ximeng & Pang, Xiulan & Li, Xiaofeng & Zhang, Pengfei & Liu, Lu, 2024. "Scenario-based ultra-short-term rolling optimal operation of a photovoltaic-energy storage system under forecast uncertainty," Applied Energy, Elsevier, vol. 356(C).
    15. Tang, Chenghui & Wang, Yishen & Xu, Jian & Sun, Yuanzhang & Zhang, Baosen, 2018. "Efficient scenario generation of multiple renewable power plants considering spatial and temporal correlations," Applied Energy, Elsevier, vol. 221(C), pages 348-357.
    16. Yun, Eunjeong & Hur, Jin, 2021. "Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources," Energy, Elsevier, vol. 223(C).
    17. Abdoos, Ali Akbar & Abdoos, Hatef & Kazemitabar, Javad & Mobashsher, Mohammad Mehdi & Khaloo, Hooman, 2023. "An intelligent hybrid method based on Monte Carlo simulation for short-term probabilistic wind power prediction," Energy, Elsevier, vol. 278(PA).
    18. Jin, Huaiping & Shi, Lixian & Chen, Xiangguang & Qian, Bin & Yang, Biao & Jin, Huaikang, 2021. "Probabilistic wind power forecasting using selective ensemble of finite mixture Gaussian process regression models," Renewable Energy, Elsevier, vol. 174(C), pages 1-18.
    19. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    20. Aslam, Sheraz & Herodotou, Herodotos & Mohsin, Syed Muhammad & Javaid, Nadeem & Ashraf, Nouman & Aslam, Shahzad, 2021. "A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.