IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v26y2024i1d10.1007_s10796-022-10335-9.html
   My bibliography  Save this article

Scenario-Based Distributionally Robust Unit Commitment Optimization Involving Cooperative Interaction with Robots

Author

Listed:
  • Xuanning Song

    (Nanjing University)

  • Bo Wang

    (Nanjing University)

  • Pei-Chun Lin

    (Feng Chia University)

  • Guangyu Ge

    (Jiangsu Second Normal University)

  • Ran Yuan

    (Nanjing University)

  • Junzo Watada

    (Waseda University)

Abstract

With the increasing penetration of renewable energy, uncertainty has become the main challenge of power systems operation. Fortunately, system operators could deal with the uncertainty by adopting stochastic optimization (SO), robust optimization (RO) and distributionally robust optimization (DRO). However, choosing a good decision takes much experience, which can be difficult when system operators are inexperienced or there are staff shortages. In this paper, a decision-making approach containing robotic assistance is proposed. First, advanced clustering and reduction methods are used to obtain the scenarios of renewable generation, thus constructing a scenario-based ambiguity set of distributionally robust unit commitment (DR-UC). Second, a DR-UC model is built according to the above time-series ambiguity set, which is solved by a hybrid algorithm containing improved particle swarm optimization (IPSO) and mathematical solver. Third, the above model and solution algorithm are imported into robots that assist in decision making. Finally, the validity of this research is demonstrated by a series of experiments on two IEEE test systems.

Suggested Citation

  • Xuanning Song & Bo Wang & Pei-Chun Lin & Guangyu Ge & Ran Yuan & Junzo Watada, 2024. "Scenario-Based Distributionally Robust Unit Commitment Optimization Involving Cooperative Interaction with Robots," Information Systems Frontiers, Springer, vol. 26(1), pages 9-23, February.
  • Handle: RePEc:spr:infosf:v:26:y:2024:i:1:d:10.1007_s10796-022-10335-9
    DOI: 10.1007/s10796-022-10335-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-022-10335-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-022-10335-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Ran & Wang, Bo & Mao, Zhixin & Watada, Junzo, 2021. "Multi-objective wind power scenario forecasting based on PG-GAN," Energy, Elsevier, vol. 226(C).
    2. Zhang, Yachao & Liu, Yan & Shu, Shengwen & Zheng, Feng & Huang, Zhanghao, 2021. "A data-driven distributionally robust optimization model for multi-energy coupled system considering the temporal-spatial correlation and distribution uncertainty of renewable energy sources," Energy, Elsevier, vol. 216(C).
    3. Francesco Piccialli & Vincenzo Schiano Cola & Fabio Giampaolo & Salvatore Cuomo, 2021. "The Role of Artificial Intelligence in Fighting the COVID-19 Pandemic," Information Systems Frontiers, Springer, vol. 23(6), pages 1467-1497, December.
    4. Luo, Xing & Zhu, Xu & Lim, Eng Gee, 2019. "A parametric bootstrap algorithm for cluster number determination of load pattern categorization," Energy, Elsevier, vol. 180(C), pages 50-60.
    5. Liang, Weikun & Lin, Shunjiang & Lei, Shunbo & Xie, Yuquan & Tang, Zhiqiang & Liu, Mingbo, 2022. "Distributionally robust optimal dispatch of CCHP campus microgrids considering the time-delay of pipelines and the uncertainty of renewable energy," Energy, Elsevier, vol. 239(PC).
    6. Sayed, Ahmed Rabee & Wang, Cheng & Chen, Sheng & Shang, Ce & Bi, Tianshu, 2021. "Distributionally robust day-ahead operation of power systems with two-stage gas contracting," Energy, Elsevier, vol. 231(C).
    7. Weidong Zhao & Qingfeng Zeng & Guangjian Zheng & Liu Yang, 2017. "The resource allocation model for multi-process instances based on particle swarm optimization," Information Systems Frontiers, Springer, vol. 19(5), pages 1057-1066, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lionel P. Robert & Marcelo Fantinato & Sangseok You & Patrick C. K. Hung, 2024. "Social Robotics Business and Computing," Information Systems Frontiers, Springer, vol. 26(1), pages 1-8, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Weikun & Lin, Shunjiang & Liu, Mingbo & Sheng, Xuan & Pan, Yue, 2024. "Risk-based distributionally robust optimal dispatch for multiple cascading failures in regional integrated energy system using surrogate modeling," Applied Energy, Elsevier, vol. 353(PA).
    2. Zhao, Baining & Qian, Tong & Tang, Wenhu & Liang, Qiheng, 2022. "A data-enhanced distributionally robust optimization method for economic dispatch of integrated electricity and natural gas systems with wind uncertainty," Energy, Elsevier, vol. 243(C).
    3. He, Shuaijia & Gao, Hongjun & Chen, Zhe & Liu, Junyong & Zhao, Liang & Wu, Gang & Xu, Song, 2022. "Low-carbon distribution system planning considering flexible support of zero-carbon energy station," Energy, Elsevier, vol. 244(PB).
    4. Lu, Xi & Xia, Shiwei & Gu, Wei & Chan, Ka Wing, 2022. "A model for balance responsible distribution systems with energy storage to achieve coordinated load shifting and uncertainty mitigation," Energy, Elsevier, vol. 249(C).
    5. Cao, Mengda & Zhang, Tao & Liu, Yajie & Zhang, Yajun & Wang, Yu & Li, Kaiwen, 2022. "An ensemble learning prognostic method for capacity estimation of lithium-ion batteries based on the V-IOWGA operator," Energy, Elsevier, vol. 257(C).
    6. Bilgi Yilmaz & Christian Laudagé & Ralf Korn & Sascha Desmettre, 2024. "Electricity GANs: Generative Adversarial Networks for Electricity Price Scenario Generation," Commodities, MDPI, vol. 3(3), pages 1-27, July.
    7. Pourmohammadi, Pardis & Saif, Ahmed, 2023. "Robust metamodel-based simulation-optimization approaches for designing hybrid renewable energy systems," Applied Energy, Elsevier, vol. 341(C).
    8. Cai, Pengcheng & Mi, Yang & Ma, Siyuan & Li, Hongzhong & Li, Dongdong & Wang, Peng, 2023. "Hierarchical game for integrated energy system and electricity-hydrogen hybrid charging station under distributionally robust optimization," Energy, Elsevier, vol. 283(C).
    9. Zhang, Yachao & Xie, Shiwei & Shu, Shengwen, 2022. "Multi-stage robust optimization of a multi-energy coupled system considering multiple uncertainties," Energy, Elsevier, vol. 238(PC).
    10. R. Rajesh, 2025. "A Grey Combined Prediction Model for Medical Treatment Risk Analysis during Pandemics," Information Systems Frontiers, Springer, vol. 27(1), pages 171-195, February.
    11. Wang, Yuwei & Yang, Yuanjuan & Fei, Haoran & Song, Minghao & Jia, Mengyao, 2022. "Wasserstein and multivariate linear affine based distributionally robust optimization for CCHP-P2G scheduling considering multiple uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    12. Zhu, Yansong & Liu, Jizhen & Hu, Yong & Xie, Yan & Zeng, Deliang & Li, Ruilian, 2024. "Distributionally robust optimization model considering deep peak shaving and uncertainty of renewable energy," Energy, Elsevier, vol. 288(C).
    13. Zhiming Zhong & Neng Fan & Lei Wu, 2024. "Multistage robust optimization for the day-ahead scheduling of hybrid thermal-hydro-wind-solar systems," Journal of Global Optimization, Springer, vol. 88(4), pages 999-1034, April.
    14. Luca Di Persio & Nicola Fraccarolo & Andrea Veronese, 2024. "Wind Energy Production in Italy: A Forecasting Approach Based on Fractional Brownian Motion and Generative Adversarial Networks," Mathematics, MDPI, vol. 12(13), pages 1-16, July.
    15. Femi Olan & Uchitha Jayawickrama & Emmanuel Ogiemwonyi Arakpogun & Jana Suklan & Shaofeng Liu, 2024. "Fake news on Social Media: the Impact on Society," Information Systems Frontiers, Springer, vol. 26(2), pages 443-458, April.
    16. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
    17. Li, Bingkang & Zhao, Huiru & Wang, Xuejie & Zhao, Yihang & Zhang, Yuanyuan & Lu, Hao & Wang, Yuwei, 2022. "Distributionally robust offering strategy of the aggregator integrating renewable energy generator and energy storage considering uncertainty and connections between the mid-to-long-term and spot elec," Renewable Energy, Elsevier, vol. 201(P1), pages 400-417.
    18. Dal Mas, Francesca & Massaro, Maurizio & Rippa, Pierluigi & Secundo, Giustina, 2023. "The challenges of digital transformation in healthcare: An interdisciplinary literature review, framework, and future research agenda," Technovation, Elsevier, vol. 123(C).
    19. Qiu, Haifeng & Gu, Wei & Liu, Pengxiang & Sun, Qirun & Wu, Zhi & Lu, Xi, 2022. "Application of two-stage robust optimization theory in power system scheduling under uncertainties: A review and perspective," Energy, Elsevier, vol. 251(C).
    20. Vijayan Sugumaran & T. V. Geetha & D. Manjula & Hema Gopal, 2017. "Guest Editorial: Computational Intelligence and Applications," Information Systems Frontiers, Springer, vol. 19(5), pages 969-974, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:26:y:2024:i:1:d:10.1007_s10796-022-10335-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.